Suppr超能文献

利用网络科学实现无机材料的预测合成

Towards Predictive Synthesis of Inorganic Materials Using Network Science.

作者信息

Aziz Alex, Carrasco Javier

机构信息

Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, Spain.

出版信息

Front Chem. 2021 Dec 21;9:798838. doi: 10.3389/fchem.2021.798838. eCollection 2021.

Abstract

Accelerating materials discovery is the cornerstone of modern technological competitiveness. Yet, the inorganic synthesis of new compounds is often an important bottleneck in this quest. Well-established quantum chemistry and experimental synthesis methods combined with consolidated network science approaches might provide revolutionary knowledge to tackle this challenge. Recent pioneering studies in this direction have shown that the topological analysis of material networks hold great potential to effectively explore the synthesizability of inorganic compounds. In this Perspective we discuss the most exciting work in this area, in particular emerging new physicochemical insights and general concepts on how network science can significantly help reduce the timescales required to discover new materials and find synthetic routes for their fabrication. We also provide a perspective on outstanding problems, challenges and open questions.

摘要

加速材料发现是现代技术竞争力的基石。然而,新化合物的无机合成往往是这一探索过程中的重要瓶颈。成熟的量子化学和实验合成方法与整合的网络科学方法相结合,可能会提供革命性的知识来应对这一挑战。近期在这一方向上的开创性研究表明,材料网络的拓扑分析在有效探索无机化合物的可合成性方面具有巨大潜力。在这篇观点文章中,我们讨论了该领域最令人兴奋的工作,特别是关于网络科学如何能显著帮助缩短发现新材料及其制造合成路线所需时间尺度的新出现的物理化学见解和一般概念。我们还对突出问题、挑战和开放性问题提供了一个观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef9c/8724131/cf9817a52292/fchem-09-798838-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验