Ibrahim Omar A, Navarro-Segarra Marina, Sadeghi Pardis, Sabaté Neus, Esquivel Juan Pablo, Kjeang Erik
Fuel Cell Research Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, V3T 0A3 Surrey, British Columbia Canada.
Fuelium S.L., Edifici Eureka, Av. Can Domènech S/N, 08193 Bellaterra, Barcelona Spain.
Chem Rev. 2022 Apr 13;122(7):7236-7266. doi: 10.1021/acs.chemrev.1c00499. Epub 2022 Jan 7.
Electrochemical energy conversion is an important supplement for storage and on-demand use of renewable energy. In this regard, microfluidics offers prospects to raise the efficiency and rate of electrochemical energy conversion through enhanced mass transport, flexible cell design, and ability to eliminate the physical ion-exchange membrane, an essential yet costly element in conventional electrochemical cells. Since the 2002 invention of the microfluidic fuel cell, the research field of has expanded into a great variety of cell designs, fabrication techniques, and device functions with a wide range of utility and applications. The present review aims to comprehensively synthesize the best practices in this field over the past 20 years. The underlying fundamentals and research methods are first summarized, followed by a complete assessment of all research contributions wherein microfluidics was proactively utilized to facilitate energy conversion in conjunction with electrochemical cells, such as fuel cells, flow batteries, electrolysis cells, hybrid cells, and photoelectrochemical cells. Moreover, emerging technologies and analytical tools enabled by microfluidics are also discussed. Lastly, opportunities for future research directions and technology advances are proposed.
电化学能量转换是可再生能源存储和按需使用的重要补充。在这方面,微流体技术有望通过增强传质、灵活的电池设计以及消除物理离子交换膜(传统电化学电池中一个必不可少但成本高昂的元件)来提高电化学能量转换的效率和速率。自2002年微流体燃料电池发明以来,该研究领域已扩展到各种各样的电池设计、制造技术和器件功能,具有广泛的用途和应用。本综述旨在全面总结该领域过去20年的最佳实践。首先总结了其基本原理和研究方法,随后对所有研究贡献进行了全面评估,其中积极利用微流体技术来促进与电化学电池(如燃料电池、液流电池、电解槽、混合电池和光电化学电池)相关的能量转换。此外,还讨论了微流体技术带来的新兴技术和分析工具。最后,提出了未来研究方向和技术进步的机会。