Rems Ervin, Herceg Ana, Yordanova Apostolova Desislava, Dominko Robert, Jovanovič Primož, Genorio Bostjan
Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
Chem Rec. 2025 Apr;25(4):e202400234. doi: 10.1002/tcr.202400234. Epub 2025 Feb 5.
Ammonia is a key chemical in the production of fertilizers, refrigeration and an emerging hydrogen-carrying fuel. However, the Haber-Bosch process, the industrial standard for centralized ammonia production, is energy-intensive and indirectly generates significant carbon dioxide emissions. Electrochemical nitrogen reduction offers a promising alternative for green ammonia production. Yet, current reaction rates remain well below economically feasible targets. This work examines the application of electrochemical microfluidics for the enhancement of the rates of electrochemical ammonia synthesis. The review is built on the introduction to electrochemical microfluidics, corresponding cell designs, and the main applications of microfluidics in electrochemical energy conversion/storage. Based on recent advances in electrochemical ammonia synthesis, with an emphasis on the critical role of robust experimental controls, electrochemical microfluidics represents a promising route to environmentally friendly, on-site and on-demand ammonia production. This review aims to bridge the knowledge gap between the disciplines of electrochemistry and microfluidics and promote interdisciplinary understanding and innovation in this transformative field.
氨是化肥生产、制冷以及一种新兴的载氢燃料中的关键化学物质。然而,哈伯-博施法作为集中式氨生产的工业标准,能源密集且间接产生大量二氧化碳排放。电化学氮还原为绿色氨生产提供了一种有前景的替代方法。然而,目前的反应速率仍远低于经济可行目标。这项工作研究了电化学微流体技术在提高电化学氨合成速率方面的应用。该综述基于对电化学微流体技术、相应电池设计以及微流体技术在电化学能量转换/存储中的主要应用的介绍。基于电化学氨合成的最新进展,强调稳健实验控制的关键作用,电化学微流体技术是实现环境友好、现场和按需氨生产的一条有前景的途径。本综述旨在弥合电化学和微流体学学科之间的知识差距,促进这一变革性领域的跨学科理解与创新。