Department of Biology, University of Southern Denmark, 5230, Odense M, Denmark.
Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, USA.
BMC Biol. 2022 Jan 7;20(1):3. doi: 10.1186/s12915-021-01185-z.
Rodent ultrasonic vocalizations (USVs) are crucial to their social communication and a widely used translational tool for linking gene mutations to behavior. To maximize the causal interpretation of experimental treatments, we need to understand how neural control affects USV production. However, both the aerodynamics of USV production and its neural control remain poorly understood.
Here, we test three intralaryngeal whistle mechanisms-the wall and alar edge impingement, and shallow cavity tone-by combining in vitro larynx physiology and individual-based 3D airway reconstructions with fluid dynamics simulations. Our results show that in the mouse and rat larynx, USVs are produced by a glottal jet impinging on the thyroid inner wall. Furthermore, we implemented an empirically based motor control model that predicts motor gesture trajectories of USV call types.
Our results identify wall impingement as the aerodynamic mechanism of USV production in rats and mice. Furthermore, our empirically based motor control model shows that both neural and anatomical components contribute to USV production, which suggests that changes in strain specific USVs or USV changes in disease models can result from both altered motor programs and laryngeal geometry. Our work provides a quantitative neuromechanical framework to evaluate the contributions of brain and body in shaping USVs and a first step in linking descending motor control to USV production.
啮齿动物的超声发声(USVs)对其社会交流至关重要,是将基因突变与行为联系起来的一种广泛应用的转化工具。为了最大限度地解释实验处理的因果关系,我们需要了解神经控制如何影响 USV 的产生。然而,USV 产生的空气动力学及其神经控制仍知之甚少。
在这里,我们通过结合体外喉生理学和基于个体的 3D 气道重建与流体动力学模拟,测试了三种喉内口哨机制——壁和翼缘撞击以及浅腔音。我们的结果表明,在小鼠和大鼠的喉中,USVs 是由喷射到甲状腺内表面的声门射流产生的。此外,我们还实现了一种基于经验的运动控制模型,该模型可以预测 USV 叫声类型的运动手势轨迹。
我们的结果确定了壁撞击是大鼠和小鼠 USV 产生的空气动力学机制。此外,我们基于经验的运动控制模型表明,神经和解剖结构都有助于 USV 的产生,这表明特定于品系的 USV 变化或疾病模型中的 USV 变化可能是由于运动程序和喉结构的改变。我们的工作提供了一个定量的神经力学框架,用于评估大脑和身体在塑造 USV 方面的贡献,并为将下行运动控制与 USV 产生联系起来迈出了第一步。