Suppr超能文献

基于深度学习模型的非接触式面部视频记录用于心房颤动检测。

Contactless facial video recording with deep learning models for the detection of atrial fibrillation.

机构信息

Department of Neurology, En Chu Kong Hospital, New Taipei City, Taiwan, ROC.

Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, 30010, Taiwan, ROC.

出版信息

Sci Rep. 2022 Jan 7;12(1):281. doi: 10.1038/s41598-021-03453-y.

Abstract

Atrial fibrillation (AF) is often asymptomatic and paroxysmal. Screening and monitoring are needed especially for people at high risk. This study sought to use camera-based remote photoplethysmography (rPPG) with a deep convolutional neural network (DCNN) learning model for AF detection. All participants were classified into groups of AF, normal sinus rhythm (NSR) and other abnormality based on 12-lead ECG. They then underwent facial video recording for 10 min with rPPG signals extracted and segmented into 30-s clips as inputs of the training of DCNN models. Using voting algorithm, the participant would be predicted as AF if > 50% of their rPPG segments were determined as AF rhythm by the model. Of the 453 participants (mean age, 69.3 ± 13.0 years, women, 46%), a total of 7320 segments (1969 AF, 1604 NSR & 3747others) were analyzed by DCNN models. The accuracy rate of rPPG with deep learning model for discriminating AF from NSR and other abnormalities was 90.0% and 97.1% in 30-s and 10-min recording, respectively. This contactless, camera-based rPPG technique with a deep-learning model achieved significantly high accuracy to discriminate AF from non-AF and may enable a feasible way for a large-scale screening or monitoring in the future.

摘要

心房颤动(AF)常无症状且呈阵发性。尤其对高危人群,需进行筛查和监测。本研究旨在利用基于摄像的远程光体积描记术(rPPG)和深度卷积神经网络(DCNN)学习模型进行 AF 检测。所有参与者均根据 12 导联心电图分为 AF、正常窦性节律(NSR)和其他异常组。然后,他们接受面部视频记录 10 分钟,提取 rPPG 信号并分段为 30 秒片段,作为 DCNN 模型训练的输入。如果模型将参与者的 rPPG 片段中 > 50%确定为 AF 节律,则使用投票算法将参与者预测为 AF。在 453 名参与者(平均年龄 69.3±13.0 岁,女性 46%)中,共分析了 7320 个片段(1969 个 AF、1604 个 NSR 和 3747 个其他)。基于深度学习模型的 rPPG 在 30 秒和 10 分钟记录中区分 AF 与 NSR 和其他异常的准确率分别为 90.0%和 97.1%。这种基于摄像的、无接触的 rPPG 技术与深度学习模型相结合,在区分 AF 与非 AF 方面具有显著的高准确率,可能为未来的大规模筛查或监测提供一种可行的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/8741942/5b66eaba3d7d/41598_2021_3453_Fig1a_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验