Suppr超能文献

社交媒体讨论可预测大学校园的心理健康咨询。

Social Media Discussions Predict Mental Health Consultations on College Campuses.

机构信息

School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA.

Microsoft Research Lab - Montreal, 6795 Rue Marconi, Suite 400, Montréal, Québec, H2S 3J9, Canada.

出版信息

Sci Rep. 2022 Jan 7;12(1):123. doi: 10.1038/s41598-021-03423-4.

Abstract

The mental health of college students is a growing concern, and gauging the mental health needs of college students is difficult to assess in real-time and in scale. To address this gap, researchers and practitioners have encouraged the use of passive technologies. Social media is one such "passive sensor" that has shown potential as a viable "passive sensor" of mental health. However, the construct validity and in-practice reliability of computational assessments of mental health constructs with social media data remain largely unexplored. Towards this goal, we study how assessing the mental health of college students using social media data correspond with ground-truth data of on-campus mental health consultations. For a large U.S. public university, we obtained ground-truth data of on-campus mental health consultations between 2011-2016, and collected 66,000 posts from the university's Reddit community. We adopted machine learning and natural language methodologies to measure symptomatic mental health expressions of depression, anxiety, stress, suicidal ideation, and psychosis on the social media data. Seasonal auto-regressive integrated moving average (SARIMA) models of forecasting on-campus mental health consultations showed that incorporating social media data led to predictions with r = 0.86 and SMAPE = 13.30, outperforming models without social media data by 41%. Our language analyses revealed that social media discussions during high mental health consultations months consisted of discussions on academics and career, whereas months of low mental health consultations saliently show expressions of positive affect, collective identity, and socialization. This study reveals that social media data can improve our understanding of college students' mental health, particularly their mental health treatment needs.

摘要

大学生的心理健康是一个日益受到关注的问题,实时且大规模地评估大学生的心理健康需求具有一定难度。为了解决这一差距,研究人员和从业者鼓励使用被动技术。社交媒体就是这样一种“被动传感器”,它已显示出作为一种可行的心理健康“被动传感器”的潜力。然而,使用社交媒体数据对心理健康结构进行计算评估的构念效度和实际可靠性在很大程度上仍未得到探索。为此,我们研究了如何使用社交媒体数据评估大学生的心理健康,以及这种评估与校园心理健康咨询的真实数据之间的关系。对于一所美国大型公立大学,我们获取了 2011-2016 年校园心理健康咨询的真实数据,并从该大学的 Reddit 社区收集了 66,000 条帖子。我们采用机器学习和自然语言方法,从社交媒体数据中衡量抑郁、焦虑、压力、自杀意念和精神病的症状性心理健康表达。用于预测校园心理健康咨询的季节性自回归综合移动平均 (SARIMA) 模型表明,纳入社交媒体数据可使预测的 r 值达到 0.86,SMAPE 值达到 13.30,比不使用社交媒体数据的模型高出 41%。我们的语言分析表明,在心理健康咨询高峰期的社交媒体讨论中,包含了关于学业和职业的讨论,而在心理健康咨询低谷期,社交媒体讨论则明显地表达了积极情绪、集体认同和社交需求。这项研究表明,社交媒体数据可以帮助我们更好地了解大学生的心理健康,尤其是他们的心理健康治疗需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c94/8741988/5001b52a657d/41598_2021_3423_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验