Saha Koustuv, Sugar Benjamin, Torous John, Abrahao Bruno, Kıcıman Emre, De Choudhury Munmun
Georgia Tech.
Harvard Medical School.
Proc Int AAAI Conf Weblogs Soc Media. 2019 Jun 7;13:440-451.
Understanding the effects of psychiatric medications during mental health treatment constitutes an active area of inquiry. While clinical trials help evaluate the effects of these medications, many trials suffer from a lack of generalizability to broader populations. We leverage social media data to examine psychopathological effects subject to self-reported usage of psychiatric medication. Using a list of common approved and regulated psychiatric drugs and a Twitter dataset of 300M posts from 30K individuals, we develop machine learning models to first assess effects relating to mood, cognition, depression, anxiety, psychosis, and suicidal ideation. Then, based on a stratified propensity score based causal analysis, we observe that use of specific drugs are associated with characteristic changes in an individual's psychopathology. We situate these observations in the psychiatry literature, with a deeper analysis of pre-treatment cues that predict treatment outcomes. Our work bears potential to inspire novel clinical investigations and to build tools for digital therapeutics.
了解精神科药物在心理健康治疗中的作用是一个活跃的研究领域。虽然临床试验有助于评估这些药物的效果,但许多试验缺乏对更广泛人群的普遍适用性。我们利用社交媒体数据来研究自我报告使用精神科药物所产生的精神病理学效应。我们使用一份常见的已批准和受监管的精神科药物清单以及一个来自3万名个体的3亿条推文的推特数据集,开发机器学习模型,首先评估与情绪、认知、抑郁、焦虑、精神病和自杀意念相关的效应。然后,基于分层倾向评分因果分析,我们观察到特定药物的使用与个体精神病理学的特征性变化有关。我们将这些观察结果置于精神病学文献中,并对预测治疗结果的治疗前线索进行更深入的分析。我们的工作有可能激发新的临床研究,并为数字疗法构建工具。