Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, India.
Biotechnol Lett. 2022 Feb;44(2):179-192. doi: 10.1007/s10529-022-03222-5. Epub 2022 Jan 9.
Penicillins and cephalosporins are the most important class of beta (β) lactam antibiotics, accounting for 65% total antibiotic market. Penicillins are produced by Penicillium rubens (popularly known as P. chrysogenum) were used to synthesize the active pharmaceutical intermediate (API), 6-aminopenicillinic acid (6-APA) employed in semisynthetic antibiotic production. The wild strains produce a negligible amount of penicillin (Pen). High antibiotic titre-producing P. chrysogenum strains are necessitating for industrial Pen production to meet global demand at lower prices. Classical strain improvement (CSI) approaches such as random mutagenesis, medium engineering, and fermentation are the cornerstones for high-titer Pen production. Since, Sir Alexander Fleming Discovery of Pen, great efforts are expanded to develop at a commercial scale antibiotics producing strains. Breakthroughs in genetic engineering, heterologous expression and CRISPR/Cas9 genome editing tools opened a new window for Pen production at a commercial scale to assure health crisis. The current state of knowledge, limitations of CSI and genetic engineering approaches to Pen production are discussed in this review.
青霉素和头孢菌素类是最重要的β(β)内酰胺类抗生素,占抗生素总市场的 65%。青霉素由青霉菌(俗称产黄青霉)产生,用于合成半合成抗生素生产中的活性药物中间体(API)6-氨基青霉素酸(6-APA)。野生菌株产生的青霉素(Pen)量可忽略不计。高产抗生素的产黄青霉菌株是工业青霉素生产的必要条件,以更低的价格满足全球需求。经典的菌株改良(CSI)方法,如随机诱变、培养基工程和发酵,是高产青霉素的基石。自亚历山大·弗莱明发现青霉素以来,人们一直在努力开发可商业化生产抗生素的菌株。遗传工程、异源表达和 CRISPR/Cas9 基因组编辑工具的突破为商业化生产青霉素打开了新的窗口,以应对健康危机。本文综述了青霉素生产的最新知识、CSI 和遗传工程方法的局限性。