Suppr超能文献

人类与机器中的情境理解

Situational Understanding in the Human and the Machine.

作者信息

Yufik Yan, Malhotra Raj

机构信息

Virtual Structures Research, Inc., Potomac, MD, United States.

United States Air Force Sensor Directorate, Dayton, OH, United States.

出版信息

Front Syst Neurosci. 2021 Dec 23;15:786252. doi: 10.3389/fnsys.2021.786252. eCollection 2021.

Abstract

The Air Force research programs envision developing AI technologies that will ensure battlespace dominance, by radical increases in the speed of battlespace understanding and decision-making. In the last half century, advances in AI have been concentrated in the area of machine learning. Recent experimental findings and insights in systems neuroscience, the biophysics of cognition, and other disciplines provide converging results that set the stage for technologies of machine understanding and machine-augmented Situational Understanding. This paper will review some of the key ideas and results in the literature, and outline new suggestions. We define situational understanding and the distinctions between understanding and awareness, consider examples of how understanding-or lack of it-manifest in performance, and review hypotheses concerning the underlying neuronal mechanisms. Suggestions for further R&D are motivated by these hypotheses and are centered on the notions of Active Inference and Virtual Associative Networks.

摘要

美国空军的研究项目设想开发人工智能技术,通过大幅提高战场态势理解和决策速度来确保战场主导权。在过去的半个世纪里,人工智能的进展主要集中在机器学习领域。最近在系统神经科学、认知生物物理学和其他学科中的实验发现和见解提供了趋同的结果,为机器理解和机器增强态势理解技术奠定了基础。本文将回顾文献中的一些关键思想和结果,并概述新的建议。我们定义态势理解以及理解与意识之间的区别,考虑理解(或缺乏理解)在性能中表现的示例,并回顾关于潜在神经元机制的假设。基于这些假设提出了进一步研发的建议,这些建议以主动推理和虚拟关联网络的概念为核心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dc7/8733725/deafce221ac5/fnsys-15-786252-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验