Suppr超能文献

DR-IIXRN:基于深度集成学习和注意力机制的糖尿病视网膜病变检测算法

DR-IIXRN : Detection Algorithm of Diabetic Retinopathy Based on Deep Ensemble Learning and Attention Mechanism.

作者信息

Ai Zhuang, Huang Xuan, Fan Yuan, Feng Jing, Zeng Fanxin, Lu Yaping

机构信息

Department of Research and Development, Sinopharm Genomics Technology Co., Ltd., Jiangsu, China.

Department of Ophthalmology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

出版信息

Front Neuroinform. 2021 Dec 24;15:778552. doi: 10.3389/fninf.2021.778552. eCollection 2021.

Abstract

Diabetic retinopathy (DR) is one of the common chronic complications of diabetes and the most common blinding eye disease. If not treated in time, it might lead to visual impairment and even blindness in severe cases. Therefore, this article proposes an algorithm for detecting diabetic retinopathy based on deep ensemble learning and attention mechanism. First, image samples were preprocessed and enhanced to obtain high quality image data. Second, in order to improve the adaptability and accuracy of the detection algorithm, we constructed a holistic detection model DR-IIXRN, which consists of Inception V3, InceptionResNet V2, Xception, ResNeXt101, and NASNetLarge. For each base classifier, we modified the network model using transfer learning, fine-tuning, and attention mechanisms to improve its ability to detect DR. Finally, a weighted voting algorithm was used to determine which category (normal, mild, moderate, severe, or proliferative DR) the images belonged to. We also tuned the trained network model on the hospital data, and the real test samples in the hospital also confirmed the advantages of the algorithm in the detection of the diabetic retina. Experiments show that compared with the traditional single network model detection algorithm, the auc, accuracy, and recall rate of the proposed method are improved to 95, 92, and 92%, respectively, which proves the adaptability and correctness of the proposed method.

摘要

糖尿病视网膜病变(DR)是糖尿病常见的慢性并发症之一,也是最常见的致盲眼病。若不及时治疗,严重时可能导致视力损害甚至失明。因此,本文提出一种基于深度集成学习和注意力机制的糖尿病视网膜病变检测算法。首先,对图像样本进行预处理和增强,以获取高质量的图像数据。其次,为提高检测算法的适应性和准确性,构建了一个整体检测模型DR-IIXRN,它由Inception V3、InceptionResNet V2、Xception、ResNeXt101和NASNetLarge组成。对于每个基础分类器,我们使用迁移学习、微调及注意力机制对网络模型进行修改,以提高其检测DR的能力。最后,使用加权投票算法确定图像属于哪个类别(正常、轻度、中度、重度或增殖性DR)。我们还在医院数据上对训练好的网络模型进行了调整,医院中的实际测试样本也证实了该算法在糖尿病视网膜检测中的优势。实验表明,与传统的单网络模型检测算法相比,该方法的AUC、准确率和召回率分别提高到了95%、92%和92%,证明了该方法的适应性和正确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdc/8740273/05b5d95ecdf1/fninf-15-778552-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验