Suppr超能文献

用于糖尿病视网膜病变分类的多模型域适应

Multi-Model Domain Adaptation for Diabetic Retinopathy Classification.

作者信息

Zhang Guanghua, Sun Bin, Zhang Zhaoxia, Pan Jing, Yang Weihua, Liu Yunfang

机构信息

Department of Intelligence and Automation, Taiyuan University, Taiyuan, China.

Graphics and Imaging Laboratory, University of Girona, Girona, Spain.

出版信息

Front Physiol. 2022 Jul 1;13:918929. doi: 10.3389/fphys.2022.918929. eCollection 2022.

Abstract

Diabetic retinopathy (DR) is one of the most threatening complications in diabetic patients, leading to permanent blindness without timely treatment. However, DR screening is not only a time-consuming task that requires experienced ophthalmologists but also easy to produce misdiagnosis. In recent years, deep learning techniques based on convolutional neural networks have attracted increasing research attention in medical image analysis, especially for DR diagnosis. However, dataset labeling is expensive work and it is necessary for existing deep-learning-based DR detection models. For this study, a novel domain adaptation method (multi-model domain adaptation) is developed for unsupervised DR classification in unlabeled retinal images. At the same time, it only exploits discriminative information from multiple source models without access to any data. In detail, we integrate a weight mechanism into the multi-model-based domain adaptation by measuring the importance of each source domain in a novel way, and a weighted pseudo-labeling strategy is attached to the source feature extractors for training the target DR classification model. Extensive experiments are performed on four source datasets (DDR, IDRiD, Messidor, and Messidor-2) to a target domain APTOS 2019, showing that MMDA produces competitive performance for present state-of-the-art methods for DR classification. As a novel DR detection approach, this article presents a new domain adaptation solution for medical image analysis when the source data is unavailable.

摘要

糖尿病视网膜病变(DR)是糖尿病患者最具威胁性的并发症之一,若不及时治疗会导致永久性失明。然而,DR筛查不仅是一项耗时的任务,需要经验丰富的眼科医生,而且容易产生误诊。近年来,基于卷积神经网络的深度学习技术在医学图像分析中引起了越来越多的研究关注,尤其是在DR诊断方面。然而,数据集标注是一项成本高昂的工作,而对于现有的基于深度学习的DR检测模型来说却是必要的。在本研究中,我们开发了一种新颖的域适应方法(多模型域适应),用于对未标记的视网膜图像进行无监督DR分类。同时,该方法仅利用多个源模型的判别信息,无需访问任何数据。具体而言,我们通过一种新颖的方式衡量每个源域的重要性,将权重机制集成到基于多模型的域适应中,并在源特征提取器上附加加权伪标签策略来训练目标DR分类模型。我们在四个源数据集(DDR、IDRiD、Messidor和Messidor-2)上对目标域APTOS 2019进行了广泛的实验,结果表明,与当前最先进的DR分类方法相比,MMDA具有竞争力。作为一种新颖的DR检测方法,本文在源数据不可用时为医学图像分析提出了一种新的域适应解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b30/9284280/3aecc89dbcde/fphys-13-918929-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验