Suppr超能文献

使用微创、超长时间皮下 EEG 进行癫痫发作预测:可推广的跨患者模型。

Seizure forecasting using minimally invasive, ultra-long-term subcutaneous EEG: Generalizable cross-patient models.

机构信息

Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA.

Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

出版信息

Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S114-S123. doi: 10.1111/epi.17265. Epub 2022 May 4.

Abstract

This study describes a generalized cross-patient seizure-forecasting approach using recurrent neural networks with ultra-long-term subcutaneous EEG (sqEEG) recordings. Data from six patients diagnosed with refractory epilepsy and monitored with an sqEEG device were used to develop a generalized algorithm for seizure forecasting using long short-term memory (LSTM) deep-learning classifiers. Electrographic seizures were identified by a board-certified epileptologist. One-minute data segments were labeled as preictal or interictal based on their relationship to confirmed seizures. Data were separated into training and testing data sets, and to compensate for the unbalanced data ratio in training, noise-added copies of preictal data segments were generated to expand the training data set. The mean and standard deviation (SD) of the training data were used to normalize all data, preserving the pseudo-prospective nature of the analysis. Different architecture classifiers were trained and tested using a leave-one-patient-out cross-validation method, and the area under the receiver-operating characteristic (ROC) curve (AUC) was used to evaluate the performance classifiers. The importance of each input signal was evaluated using a leave-one-signal-out method with repeated training and testing for each classifier. Cross-patient classifiers achieved performance significantly better than chance in four of the six patients and an overall mean AUC of 0.602 ± 0.126 (mean ± SD). A time in warning of 37.386% ± 5.006% (mean ± std) and sensitivity of 0.691 ± 0.068 (mean ± std) were observed for patients with better than chance results. Analysis of input channels showed a significant contribution (p < .05) by the Fourier transform of signals channels to overall classifier performance. The relative contribution of input signals varied among patients and architectures, suggesting that the inclusion of all signals contributes to robustness in a cross-patient classifier. These early results show that it is possible to forecast seizures training with data from different patients using two-channel ultra-long-term sqEEG.

摘要

本研究描述了一种使用具有超长程皮下 EEG(sqEEG)记录的递归神经网络的广义跨患者发作预测方法。使用来自六名被诊断为难治性癫痫并使用 sqEEG 设备监测的患者的数据,使用长短期记忆(LSTM)深度学习分类器为发作预测开发了一种广义算法。电发作由经过董事会认证的癫痫专家确定。根据与确认的发作的关系,将 1 分钟数据段标记为发作前或发作间。将数据分为训练和测试数据集,为了补偿训练中数据不平衡的比例,生成了添加噪声的发作前数据段副本以扩展训练数据集。使用训练数据的平均值和标准差(SD)对所有数据进行归一化,保留分析的伪前瞻性性质。使用留一患者交叉验证方法训练和测试不同架构的分类器,并使用接收者操作特征(ROC)曲线下面积(AUC)评估分类器的性能。使用每次分类器的重复训练和测试的留一信号法评估每个输入信号的重要性。在六个患者中的四个中,跨患者分类器的性能明显优于随机,总体平均 AUC 为 0.602±0.126(平均值±标准差)。对于结果优于随机的患者,观察到警告时间为 37.386%±5.006%(平均值±标准差)和灵敏度为 0.691±0.068(平均值±标准差)。对输入通道的分析表明,信号通道的傅立叶变换对整体分类器性能有显著贡献(p<0.05)。输入信号的相对贡献在患者和架构之间有所不同,这表明包括所有信号有助于在跨患者分类器中具有稳健性。这些早期结果表明,使用双通道超长程 sqEEG 从不同患者的数据中进行训练可以预测发作。

相似文献

1
Seizure forecasting using minimally invasive, ultra-long-term subcutaneous EEG: Generalizable cross-patient models.
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S114-S123. doi: 10.1111/epi.17265. Epub 2022 May 4.
2
Seizure forecasting using minimally invasive, ultra-long-term subcutaneous electroencephalography: Individualized intrapatient models.
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S124-S133. doi: 10.1111/epi.17252. Epub 2022 Apr 16.
4
Identifying signal-dependent information about the preictal state: A comparison across ECoG, EEG and EKG using deep learning.
EBioMedicine. 2019 Jul;45:422-431. doi: 10.1016/j.ebiom.2019.07.001. Epub 2019 Jul 9.
5
Learning to generalize seizure forecasts.
Epilepsia. 2023 Dec;64 Suppl 4:S99-S113. doi: 10.1111/epi.17406. Epub 2022 Sep 22.
6
Crowdsourcing reproducible seizure forecasting in human and canine epilepsy.
Brain. 2016 Jun;139(Pt 6):1713-22. doi: 10.1093/brain/aww045. Epub 2016 Mar 31.
7
Detecting temporal lobe seizures in ultra long-term subcutaneous EEG using algorithm-based data reduction.
Clin Neurophysiol. 2022 Oct;142:86-93. doi: 10.1016/j.clinph.2022.07.504. Epub 2022 Aug 8.
8
Seizure detection with deep neural networks for review of two-channel electroencephalogram.
Epilepsia. 2023 Dec;64 Suppl 4:S34-S39. doi: 10.1111/epi.17259. Epub 2022 Apr 24.
9
Early prediction of epileptic seizures using a long-term recurrent convolutional network.
J Neurosci Methods. 2019 Nov 1;327:108395. doi: 10.1016/j.jneumeth.2019.108395. Epub 2019 Aug 10.
10
A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals.
Comput Biol Med. 2018 Aug 1;99:24-37. doi: 10.1016/j.compbiomed.2018.05.019. Epub 2018 May 17.

引用本文的文献

2
Using Long Short-Term Memory (LSTM) recurrent neural networks to classify unprocessed EEG for seizure prediction.
Front Neurosci. 2024 Nov 15;18:1472747. doi: 10.3389/fnins.2024.1472747. eCollection 2024.
3
Editorial: Seizure forecasting tools, biomarkers and devices.
Front Neurosci. 2024 Aug 28;18:1470640. doi: 10.3389/fnins.2024.1470640. eCollection 2024.
5
Concept-drifts adaptation for machine learning EEG epilepsy seizure prediction.
Sci Rep. 2024 Apr 8;14(1):8204. doi: 10.1038/s41598-024-57744-1.
6
Comparison between epileptic seizure prediction and forecasting based on machine learning.
Sci Rep. 2024 Mar 7;14(1):5653. doi: 10.1038/s41598-024-56019-z.
7
Getting Under the Skin of Seizure Monitoring: A Subcutaneous EEG Tool to Keep a Tally Over the Long Haul.
Epilepsy Curr. 2023 Aug 29;23(6):351-353. doi: 10.1177/15357597231197093. eCollection 2023 Nov-Dec.
8
Perceived seizure risk in epilepsy: Chronic electronic surveys with and without concurrent electroencephalography.
Epilepsia. 2023 Sep;64(9):2421-2433. doi: 10.1111/epi.17678. Epub 2023 Jun 19.
9
Perceived seizure risk in epilepsy â€" Chronic electronic surveys with and without concurrent EEG.
medRxiv. 2023 Mar 28:2023.03.23.23287561. doi: 10.1101/2023.03.23.23287561.
10
Seizure forecasting: Where do we stand?
Epilepsia. 2023 Dec;64 Suppl 3(Suppl 3):S62-S71. doi: 10.1111/epi.17546. Epub 2023 Mar 8.

本文引用的文献

1
The Individual Ictal Fingerprint: Combining Movement Measures With Ultra Long-Term Subcutaneous EEG in People With Epilepsy.
Front Neurol. 2021 Dec 23;12:718329. doi: 10.3389/fneur.2021.718329. eCollection 2021.
2
3
Forecasting Seizure Likelihood With Wearable Technology.
Front Neurol. 2021 Jul 15;12:704060. doi: 10.3389/fneur.2021.704060. eCollection 2021.
4
Seizure Diaries and Forecasting With Wearables: Epilepsy Monitoring Outside the Clinic.
Front Neurol. 2021 Jul 13;12:690404. doi: 10.3389/fneur.2021.690404. eCollection 2021.
5
Signal quality and power spectrum analysis of remote ultra long-term subcutaneous EEG.
Epilepsia. 2021 Aug;62(8):1820-1828. doi: 10.1111/epi.16969. Epub 2021 Jul 12.
7
Under-sampling in epilepsy: Limitations of conventional EEG.
Clin Neurophysiol Pract. 2020 Dec 30;6:41-49. doi: 10.1016/j.cnp.2020.12.002. eCollection 2021.
8
230 days of ultra long-term subcutaneous EEG: seizure cycle analysis and comparison to patient diary.
Ann Clin Transl Neurol. 2021 Jan;8(1):288-293. doi: 10.1002/acn3.51261. Epub 2020 Dec 4.
9
Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting.
Epilepsia. 2020 Dec;61(12):2653-2666. doi: 10.1111/epi.16719. Epub 2020 Oct 11.
10
Semi-supervised Training Data Selection Improves Seizure Forecasting in Canines with Epilepsy.
Biomed Signal Process Control. 2020 Mar;57. doi: 10.1016/j.bspc.2019.101743. Epub 2019 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验