Broderick David T J, Waite David W, Marsh Robyn L, Camargo Carlos A, Cardenas Paul, Chang Anne B, Cookson William O C, Cuthbertson Leah, Dai Wenkui, Everard Mark L, Gervaix Alain, Harris J Kirk, Hasegawa Kohei, Hoffman Lucas R, Hong Soo-Jong, Josset Laurence, Kelly Matthew S, Kim Bong-Soo, Kong Yong, Li Shuai C, Mansbach Jonathan M, Mejias Asuncion, O'Toole George A, Paalanen Laura, Pérez-Losada Marcos, Pettigrew Melinda M, Pichon Maxime, Ramilo Octavio, Ruokolainen Lasse, Sakwinska Olga, Seed Patrick C, van der Gast Christopher J, Wagner Brandie D, Yi Hana, Zemanick Edith T, Zheng Yuejie, Pillarisetti Naveen, Taylor Michael W
School of Biological Sciences, University of Auckland, Auckland, New Zealand.
Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
Front Microbiol. 2021 Dec 23;12:711134. doi: 10.3389/fmicb.2021.711134. eCollection 2021.
The airway microbiota has been linked to specific paediatric respiratory diseases, but studies are often small. It remains unclear whether particular bacteria are associated with a given disease, or if a more general, non-specific microbiota association with disease exists, as suggested for the gut. We investigated overarching patterns of bacterial association with acute and chronic paediatric respiratory disease in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from published respiratory microbiota studies. We obtained raw microbiota data from public repositories or communication with corresponding authors. Cross-sectional analyses of the paediatric (<18 years) microbiota in acute and chronic respiratory conditions, with >10 case subjects were included. Sequence data were processed using a uniform bioinformatics pipeline, removing a potentially substantial source of variation. Microbiota differences across diagnoses were assessed using alpha- and beta-diversity approaches, machine learning, and biomarker analyses. We ultimately included 20 studies containing individual data from 2624 children. Disease was associated with lower bacterial diversity in nasal and lower airway samples and higher relative abundances of specific nasal taxa including and . Machine learning success in assigning samples to diagnostic groupings varied with anatomical site, with positive predictive value and sensitivity ranging from 43 to 100 and 8 to 99%, respectively. IPD meta-analysis of the respiratory microbiota across multiple diseases allowed identification of a non-specific disease association which cannot be recognised by studying a single disease. Whilst imperfect, machine learning offers promise as a potential additional tool to aid clinical diagnosis.
气道微生物群已被证明与特定的儿科呼吸道疾病有关,但相关研究规模通常较小。目前尚不清楚特定细菌是否与某种特定疾病相关,或者是否存在一种更普遍、非特异性的微生物群与疾病的关联,就像在肠道中所发现的那样。我们在一项个体参与者数据(IPD)荟萃分析中,对已发表的呼吸道微生物群研究中的16S rRNA基因序列进行了调查,以探究细菌与急性和慢性儿科呼吸道疾病的总体关联模式。我们从公共数据库或与通讯作者联系中获取了原始微生物群数据。纳入了对患有急性和慢性呼吸道疾病的儿科(<18岁)微生物群的横断面分析,病例数超过10例。使用统一的生物信息学流程对序列数据进行处理,消除了一个潜在的巨大变异来源。使用α-和β-多样性方法、机器学习和生物标志物分析来评估不同诊断之间的微生物群差异。我们最终纳入了20项研究,这些研究包含了2624名儿童的个体数据。疾病与鼻腔和下呼吸道样本中较低的细菌多样性以及特定鼻腔分类群(包括和)的较高相对丰度有关。将样本分配到诊断分组的机器学习成功率因解剖部位而异,阳性预测值和灵敏度分别为43%至100%和8%至99%。对多种疾病的呼吸道微生物群进行IPD荟萃分析,能够识别出一种通过研究单一疾病无法识别的非特异性疾病关联。尽管并不完美,但机器学习有望成为辅助临床诊断的潜在额外工具。