Suppr超能文献

基于Illumina和Oxford Nanopore扩增子测序的16S rRNA基因细菌分类学分配方法的基准测试

Benchmarking 16S rRNA Gene-Based Approaches to Bacterial Taxonomy Assignment Based on Amplicon Sequencing With Illumina and Oxford Nanopore.

作者信息

Hoffbeck Carmen, Middleton Danielle M R L, Nelson Nicola J, Taylor Michael W

机构信息

School of Biological Sciences, University of Auckland, Auckland, New Zealand.

Manaaki Whenua - Landcare Research, Lincoln, New Zealand.

出版信息

Int J Microbiol. 2025 Aug 13;2025:7563096. doi: 10.1155/ijm/7563096. eCollection 2025.

Abstract

Research investigating the microbial community of an ecosystem or animal can involve a range of methodologies, including sequencing technology, bioinformatic software and taxonomy database. Researchers may utilise short-read sequencing on Illumina MiSeq or long-read sequencing on platforms like Oxford Nanopore to obtain different research outcomes, for example, enhanced identification of microbes at species or strain level with Nanopore. However, replicability across these techniques is not well studied, while the technique used to process reads into microbial taxa may also result in different taxonomy assignments. In this study, we analyse an existing, real-world dataset which had low genus-level identification with Illumina sequencing and analysis with the SILVA database and compare sequencing with Nanopore on the same samples. We pair this with multiple bioinformatic approaches and taxonomy databases for each sequencing technique to compare phylum- and genus-level assignments and use mock communities to identify which combination of sequencing technique, bioinformatic approach and taxonomy database provides the most accurate taxonomy. We found that Nanopore reads processed with either utilised bioinformatic approach or taxonomy database provided higher accuracy in the assignment of a mock community than any technique combination with Illumina. We also found that the Top 10 genera assigned to a real-world database were substantially different across technique combinations and varied more by taxonomy database than either bioinformatic approach or sequencing technology.

摘要

研究生态系统或动物的微生物群落可能涉及一系列方法,包括测序技术、生物信息软件和分类数据库。研究人员可能会在Illumina MiSeq上使用短读长测序,或在牛津纳米孔等平台上使用长读长测序来获得不同的研究结果,例如,利用纳米孔技术在物种或菌株水平上增强对微生物的识别。然而,这些技术之间的可重复性尚未得到充分研究,同时用于将读数处理为微生物分类群的技术也可能导致不同的分类学归属。在本研究中,我们分析了一个现有的真实世界数据集,该数据集使用Illumina测序和SILVA数据库进行分析时,属水平的识别率较低,并对相同样本进行纳米孔测序比较。我们将此与每种测序技术的多种生物信息学方法和分类数据库相结合,以比较门和属水平的归属,并使用模拟群落来确定哪种测序技术、生物信息学方法和分类数据库的组合提供最准确的分类学。我们发现,使用任何一种生物信息学方法或分类数据库处理的纳米孔读数,在模拟群落的归属上比任何Illumina技术组合都具有更高的准确性。我们还发现,在不同技术组合中,分配到真实世界数据库的前10个属有很大差异,并且分类数据库的差异比生物信息学方法或测序技术的差异更大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验