Suppr超能文献

使用源自 16S 扩增子测序的两个大型帕金森病肠道微生物组数据集进行差异丰度检测方法的比较研究。

Comparison study of differential abundance testing methods using two large Parkinson disease gut microbiome datasets derived from 16S amplicon sequencing.

机构信息

Department of Neurology, University of Alabama At Birmingham, Birmingham, AL, 35294, USA.

出版信息

BMC Bioinformatics. 2021 May 25;22(1):265. doi: 10.1186/s12859-021-04193-6.

Abstract

BACKGROUND

Testing for differential abundance of microbes in disease is a common practice in microbiome studies. Numerous differential abundance (DA) testing methods exist and range from traditional statistical tests to methods designed for microbiome data. Comparison studies of DA testing methods have been performed, but none performed on microbiome datasets collected for the study of real, complex disease. Due to this, DA testing was performed here using various DA methods in two large, uniformly collected gut microbiome datasets on Parkinson disease (PD), and their results compared.

RESULTS

Overall, 78-92% of taxa tested were detected as differentially abundant by at least one method, while 5-22% were called differentially abundant by the majority of methods (depending on dataset and filtering of taxonomic data prior to testing). Concordances between method results ranged from 1 to 100%. Average concordance for datasets 1 and 2 were 24% and 28% respectively, and 27% for replicated DA signatures. Concordances increased when removing rarer taxa before testing, increasing average concordances by 2-32%. Certain methods consistently resulted in higher concordances (e.g. ANCOM-BC, LEfSe), while others consistently resulted in lower (e.g. edgeR, fitZIG). Hierarchical clustering revealed three groups of DA signatures that were (1) replicated by the majority of methods on average and included taxa previously associated with PD, (2) replicated by a subset of methods and included taxa largely enriched in PD, and (3) replicated by few to one method(s).

CONCLUSIONS

Differential abundance tests yielded varied concordances, and amounts of detected DA signatures. Some methods were more concordant than others on both filtered and unfiltered data, therefore, if consistency with other study methodology is a key goal, one might choose among these methods. Even still, using one method on one dataset may find true associations, but may also detect false positives. To help lower false positives, one might analyze data with two or more DA methods to gauge concordance, and use a built-in replication dataset. This study will hopefully serve to complement previously reported DA method comparison studies by implementing and coalescing a large number of both previously and yet to be compared methods on two real gut microbiome datasets.

摘要

背景

在微生物组研究中,检测疾病中微生物的丰度差异是一种常见做法。存在许多差异丰度(DA)检测方法,范围从传统的统计检验到专为微生物组数据设计的方法。已经进行了 DA 检测方法的比较研究,但没有一项是在针对真实复杂疾病的微生物组数据集上进行的。由于这个原因,在这里使用了各种 DA 方法在两个大型、统一收集的帕金森病(PD)肠道微生物组数据集上进行了 DA 测试,并比较了它们的结果。

结果

总体而言,至少有一种方法检测到 78-92%的测试分类群存在丰度差异,而 5-22%的分类群被大多数方法称为丰度差异(取决于数据集和在测试前对分类数据的过滤)。方法结果之间的一致性范围从 1 到 100%。数据集 1 和 2 的平均一致性分别为 24%和 28%,重复 DA 特征的一致性为 27%。在进行测试之前去除更罕见的分类群时,一致性会增加,平均一致性会增加 2-32%。某些方法始终会产生更高的一致性(例如 ANCOM-BC、LEfSe),而其他方法始终会产生更低的一致性(例如 edgeR、fitZIG)。层次聚类揭示了三种 DA 特征,它们分别是:(1)大多数方法平均复制,包括先前与 PD 相关的分类群;(2)由一组子集方法复制,包括在 PD 中大量富集的分类群;(3)仅由少数一种或多种方法复制。

结论

差异丰度测试产生了不同的一致性和检测到的 DA 特征数量。一些方法在过滤和未过滤的数据上都比其他方法更一致,因此,如果与其他研究方法的一致性是一个关键目标,那么可以在这些方法中进行选择。即使如此,在一个数据集上使用一种方法可能会发现真正的关联,但也可能会检测到假阳性。为了帮助降低假阳性,人们可以使用两种或更多的 DA 方法来分析数据,以评估一致性,并使用内置的复制数据集。本研究希望通过在两个真实的肠道微生物组数据集上实施和合并大量以前和尚未比较的方法,来补充以前报道的 DA 方法比较研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69bb/8147401/723bbfc5c78c/12859_2021_4193_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验