Suppr超能文献

使用机器学习对使用阿片类药物的患者进行分类。

Using machine learning to classify patients on opioid use.

作者信息

Zhao Shirong, Browning Jamie, Cui Yan, Wang Junling

机构信息

Department of Investment, School of Finance, Dongbei University of Finance and Economics, Dalian, Liaoning, China.

Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy, Memphis, TN, USA.

出版信息

J Pharm Health Serv Res. 2021 Oct 19;12(4):502-508. doi: 10.1093/jphsr/rmab055. eCollection 2021 Nov.

Abstract

OBJECTIVES

High-frequent opioid use tends to increase an individual's risk of opioid use disorder, overdose and death. Thus, it is important to predict an individuals' opioid use frequency to improve opioid prescription utilization outcomes.

METHODS

Individuals receiving at least one opioid prescription from 2016 to 2018 in the national representative data, Medical Expenditure Panel Survey, were included. This study applied five machine learning (ML) techniques, including support vector machine, random forest, neural network, gradient boosting and XGBoost (extreme gradient boosting), to predict opioid use frequency. This study compared the performance of these ML models with penalized logistic regression. The study outcome was whether an individual lied in the upper 10% of the opioid prescription distribution. Predictors were selected based on Gelberg-Andersen's Behavioral Model of Health Services Utilization. The prediction performance was assessed using the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) in the test data. Patient characteristics as predictors for high-frequency use of opioids were ranked by the relative importance in prediction in the test data.

KEY FINDINGS

Random forest and gradient boosting achieved the top values of both AUROC and AUPRC, outperforming logistic regression and three other ML methods. In the best performing model, the random forest, the following characteristics had high predictive power in the frequency of opioid use: age, number of chronic conditions, public insurance and self-perceived health status.

CONCLUSIONS

The results of this study demonstrate that ML techniques can be a promising and powerful technique in predicting the frequency of opioid use and health outcomes.

摘要

目标

频繁使用阿片类药物往往会增加个体患阿片类药物使用障碍、过量用药和死亡的风险。因此,预测个体的阿片类药物使用频率对于改善阿片类药物处方使用结果很重要。

方法

纳入在具有全国代表性的数据《医疗支出面板调查》中2016年至2018年期间至少接受过一次阿片类药物处方的个体。本研究应用了五种机器学习(ML)技术,包括支持向量机、随机森林、神经网络、梯度提升和XGBoost(极端梯度提升)来预测阿片类药物使用频率。本研究将这些ML模型的性能与惩罚逻辑回归进行了比较。研究结果是个体是否处于阿片类药物处方分布的前10%。预测变量是根据格尔伯格 - 安德森的卫生服务利用行为模型选择的。使用测试数据中的受试者工作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)评估预测性能。作为阿片类药物高频使用预测变量的患者特征,根据其在测试数据预测中的相对重要性进行排名。

主要发现

随机森林和梯度提升在AUROC和AUPRC方面均取得了最高值,优于逻辑回归和其他三种ML方法。在表现最佳的随机森林模型中,以下特征在阿片类药物使用频率方面具有较高的预测能力:年龄、慢性病数量、公共保险和自我感知的健康状况。

结论

本研究结果表明,ML技术在预测阿片类药物使用频率和健康结果方面可能是一种有前途且强大的技术。

相似文献

1
Using machine learning to classify patients on opioid use.使用机器学习对使用阿片类药物的患者进行分类。
J Pharm Health Serv Res. 2021 Oct 19;12(4):502-508. doi: 10.1093/jphsr/rmab055. eCollection 2021 Nov.

本文引用的文献

8
Machine learning for phenotyping opioid overdose events.机器学习在阿片类药物过量表型中的应用。
J Biomed Inform. 2019 Jun;94:103185. doi: 10.1016/j.jbi.2019.103185. Epub 2019 Apr 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验