McCarthy Alec, Shah Rajesh, John Johnson V, Brown Demi, Xie Jingwei
Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 668198, USA.
Spectro Coating Corporation, Leominster, Massachusetts 01453, USA.
Appl Phys Rev. 2021 Dec;8(4):041326. doi: 10.1063/5.0070658.
Electrostatic flocking immobilizes electrical charges to the surface of microfibers from a high voltage-connected electrode and utilizes Coulombic forces to propel microfibers toward an adhesive-coated substrate, leaving a forest of aligned fibers. This traditional textile engineering technique has been used to modify surfaces or to create standalone anisotropic structures. Notably, a small body of evidence validating the use of electrostatic flocking for biomedical applications has emerged over the past several years. Noting the growing interest in utilizing electrostatic flocking in biomedical research, we aim to provide an overview of electrostatic flocking, including the principle, setups, and general and biomedical considerations, and propose a variety of biomedical applications. We begin with an introduction to the development and general applications of electrostatic flocking. Additionally, we introduce and review some of the flocking physics and mathematical considerations. We then discuss how to select, synthesize, and tune the main components (flocking fibers, adhesives, substrates) of electrostatic flocking for biomedical applications. After reviewing the considerations necessary for applying flocking toward biomedical research, we introduce a variety of proposed use cases including bone and skin tissue engineering, wound healing and wound management, and specimen swabbing. Finally, we presented the industrial comments followed by conclusions and future directions. We hope this review article inspires a broad audience of biomedical, material, and physics researchers to apply electrostatic flocking technology to solve a variety of biomedical and materials science problems.
静电植绒是将电荷从连接高压的电极固定到微纤维表面,并利用库仑力将微纤维推向涂有粘合剂的基材,从而形成排列整齐的纤维丛。这种传统的纺织工程技术已被用于修饰表面或创建独立的各向异性结构。值得注意的是,在过去几年中,已经出现了一小部分验证静电植绒在生物医学应用中的证据。鉴于在生物医学研究中对利用静电植绒的兴趣日益浓厚,我们旨在对静电植绒进行概述,包括原理、设置以及一般和生物医学方面的考虑因素,并提出各种生物医学应用。我们首先介绍静电植绒的发展和一般应用。此外,我们介绍并回顾一些植绒物理和数学方面的考虑因素。然后,我们讨论如何为生物医学应用选择、合成和调整静电植绒的主要成分(植绒纤维、粘合剂、基材)。在回顾了将植绒应用于生物医学研究所需的考虑因素之后,我们介绍了各种提议的用例,包括骨和皮肤组织工程、伤口愈合和伤口管理以及样本擦拭。最后,我们给出了行业评论,随后是结论和未来方向。我们希望这篇综述文章能激发广大生物医学、材料和物理研究人员应用静电植绒技术来解决各种生物医学和材料科学问题。