Suppr超能文献

基于图的湿咳和干咳信号特征提取与分类:一种机器学习方法。

Graph-based feature extraction and classification of wet and dry cough signals: a machine learning approach.

作者信息

Renjini A, Swapna M S, Raj Vimal, Sankararaman S

机构信息

Department of Optoelectronics, University of Kerala, Trivandrum 695581, Kerala, India.

出版信息

J Complex Netw. 2021 Nov 12;9(6):cnab039. doi: 10.1093/comnet/cnab039. eCollection 2021 Dec.

Abstract

This article proposes a unique approach to bring out the potential of graph-based features to reveal the hidden signatures of wet (WE) and dry (DE) cough signals, which are the suggestive symptoms of various respiratory ailments like COVID 19. The spectral and complex network analyses of 115 cough signals are employed for perceiving the airflow dynamics through the infected respiratory tract while coughing. The different phases of WE and DE are observed from their time-domain signals, indicating the operation of the glottis. The wavelet analysis of WE shows a frequency spread due to the turbulence in the respiratory tract. The complex network features namely degree centrality, eigenvector centrality, transitivity, graph density and graph entropy not only distinguish WE and DE but also reveal the associated airflow dynamics. A better distinguishability between WE and DE is obtained through the supervised machine learning techniques (MLTs)-quadratic support vector machine and neural net pattern recognition (NN), when compared to the unsupervised MLT, principal component analysis. The 93.90% classification accuracy with a precision of 97.00% suggests NN as a better classifier using complex network features. The study opens up the possibility of complex network analysis in remote auscultation.

摘要

本文提出了一种独特的方法,以挖掘基于图形的特征的潜力,从而揭示湿性(WE)和干性(DE)咳嗽信号的隐藏特征,这些信号是COVID-19等各种呼吸道疾病的提示性症状。对115个咳嗽信号进行频谱和复杂网络分析,以了解咳嗽时受感染呼吸道的气流动力学。从它们的时域信号中观察到WE和DE的不同阶段,这表明了声门的运作。WE的小波分析显示,由于呼吸道中的湍流,频率分布有所扩展。复杂网络特征,即度中心性、特征向量中心性、传递性、图密度和图熵,不仅可以区分WE和DE,还能揭示相关的气流动力学。与无监督机器学习技术主成分分析相比,通过监督机器学习技术——二次支持向量机和神经网络模式识别(NN),可以更好地区分WE和DE。93.90%的分类准确率和97.00%的精确率表明,使用复杂网络特征时,NN是更好的分类器。该研究开启了远程听诊中复杂网络分析的可能性。

相似文献

2
Bioacoustic signal analysis through complex network features.通过复杂网络特征进行生物声信号分析。
Comput Biol Med. 2022 Jun;145:105491. doi: 10.1016/j.compbiomed.2022.105491. Epub 2022 Apr 5.
9
Classification of EEG Signals Based on Pattern Recognition Approach.基于模式识别方法的脑电图信号分类
Front Comput Neurosci. 2017 Nov 21;11:103. doi: 10.3389/fncom.2017.00103. eCollection 2017.

本文引用的文献

2
Network-based prediction of drug combinations.基于网络的药物组合预测。
Nat Commun. 2019 Mar 13;10(1):1197. doi: 10.1038/s41467-019-09186-x.
6
Principal component analysis: a review and recent developments.主成分分析:综述与最新进展
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202. doi: 10.1098/rsta.2015.0202.
10
Automated algorithm for Wet/Dry cough sounds classification.用于湿咳/干咳声音分类的自动化算法。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3147-50. doi: 10.1109/EMBC.2012.6346632.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验