Suppr超能文献

将细胞色素P450 TamI工程化为迭代生物催化剂,用于替拉霉素抗生素的选择性后期C-H官能化和环氧化反应。

Engineering P450 TamI as an Iterative Biocatalyst for Selective Late-Stage C-H Functionalization and Epoxidation of Tirandamycin Antibiotics.

作者信息

Espinoza Rosa V, Haatveit Kersti Caddell, Grossman S Wald, Tan Jin Yi, McGlade Caylie A, Khatri Yogan, Newmister Sean A, Schmidt Jennifer J, Garcia-Borràs Marc, Montgomery John, Houk K N, Sherman David H

机构信息

Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States.

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.

出版信息

ACS Catal. 2021 Jul 2;11(13):8304-8316. doi: 10.1021/acscatal.1c01460. Epub 2021 Jun 22.

Abstract

Iterative P450 enzymes are powerful biocatalysts for selective late-stage C-H oxidation of complex natural product scaffolds. These enzymes represent useful tools for selectivity and cascade reactions, facilitating direct access to core structure diversification. Recently, we reported the structure of the multifunctional bacterial P450 TamI and elucidated the molecular basis of its substrate binding and strict reaction sequence at distinct carbon atoms of the substrate. Here, we report the design and characterization of a of TamI biocatalysts, generated by mutations at Leu101, Leu244, and/or Leu295, that alter the native selectivity, step sequence, and number of reactions catalyzed, including the engineering of a variant capable of catalyzing a four-step oxidative cascade without the assistance of the flavoprotein and oxidative partner TamL. The tuned enzymes override inherent substrate reactivity, enabling catalyst-controlled C-H functionalization and alkene epoxidation of the tetramic acid-containing natural product tirandamycin. Five bioactive tirandamycin derivatives (6-10) were generated through TamI-mediated enzymatic synthesis. Quantum mechanics calculations and MD simulations provide important insights into the basis of altered selectivity and underlying biocatalytic mechanisms for enhanced continuous oxidation of the iterative P450 TamI.

摘要

迭代细胞色素P450酶是用于复杂天然产物支架选择性后期C-H氧化的强大生物催化剂。这些酶是选择性和级联反应的有用工具,有助于直接实现核心结构多样化。最近,我们报道了多功能细菌P450 TamI的结构,并阐明了其底物结合以及在底物不同碳原子处严格反应顺序的分子基础。在此,我们报道了通过在Leu101、Leu244和/或Leu295处进行突变产生的一系列TamI生物催化剂的设计与表征,这些突变改变了天然选择性、反应步骤顺序以及催化反应的数量,包括设计出一种能够在没有黄素蛋白和氧化伴侣TamL协助的情况下催化四步氧化级联反应的变体。经过调整的酶克服了固有的底物反应性,实现了含四胺酸的天然产物替拉霉素的催化剂控制的C-H官能化和烯烃环氧化。通过TamI介导的酶促合成产生了五种生物活性替拉霉素衍生物(6-10)。量子力学计算和分子动力学模拟为迭代细胞色素P450 TamI选择性改变的基础以及增强连续氧化的潜在生物催化机制提供了重要见解。

相似文献

2
Molecular Basis of Iterative C─H Oxidation by TamI, a Multifunctional P450 monooxygenase from the Tirandamycin Biosynthetic Pathway.
ACS Catal. 2020 Nov 20;10(22):13445-13454. doi: 10.1021/acscatal.0c03248. Epub 2020 Nov 4.
3
Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes.
Nat Chem. 2011 Jul 17;3(8):628-33. doi: 10.1038/nchem.1087.
5
Computational Protocol to Understand P450 Mechanisms and Design of Efficient and Selective Biocatalysts.
Front Chem. 2019 Jan 11;6:663. doi: 10.3389/fchem.2018.00663. eCollection 2018.
6
Identification of an unexpected shunt pathway product provides new insights into tirandamycin biosynthesis.
Tetrahedron Lett. 2016 Dec 28;57(52):5919-5923. doi: 10.1016/j.tetlet.2016.11.080. Epub 2016 Nov 19.
7
Manganese Catalyzed C-H Halogenation.
Acc Chem Res. 2015 Jun 16;48(6):1727-35. doi: 10.1021/acs.accounts.5b00062. Epub 2015 Jun 4.
8
Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity.
Trends Biochem Sci. 2020 Jun;45(6):511-525. doi: 10.1016/j.tibs.2020.03.004. Epub 2020 Apr 5.
9
Molecular Basis for Chemoselectivity Control in Oxidations of Internal Aryl-Alkenes Catalyzed by Laboratory Evolved P450s.
Chembiochem. 2024 May 17;25(10):e202400066. doi: 10.1002/cbic.202400066. Epub 2024 Apr 26.
10
Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
Nature. 2017 Nov 30;551(7682):609-613. doi: 10.1038/nature24641. Epub 2017 Nov 20.

引用本文的文献

1
Three distinct strategies lead to programmable aliphatic C-H oxidation in bicyclomycin biosynthesis.
Nat Commun. 2025 May 19;16(1):4651. doi: 10.1038/s41467-025-58997-8.
2
Evaluation of tirandamycins with selective activity against Enterococci in the silkworm infection model.
J Antibiot (Tokyo). 2025 Mar;78(4):211-218. doi: 10.1038/s41429-024-00805-4. Epub 2025 Feb 14.
3
Identifying sesterterpenoids via feature-based molecular networking and small-scale fermentation.
Appl Microbiol Biotechnol. 2024 Oct 8;108(1):483. doi: 10.1007/s00253-024-13299-9.
5
Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing.
Acta Pharm Sin B. 2024 Mar;14(3):1030-1076. doi: 10.1016/j.apsb.2023.11.021. Epub 2023 Nov 18.
7
Recent Advances in Biocatalysis for Drug Synthesis.
Biomedicines. 2022 Apr 21;10(5):964. doi: 10.3390/biomedicines10050964.
8
Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development.
ChemMedChem. 2022 Jun 20;17(12):e202200115. doi: 10.1002/cmdc.202200115. Epub 2022 May 2.

本文引用的文献

1
Molecular Basis of Iterative C─H Oxidation by TamI, a Multifunctional P450 monooxygenase from the Tirandamycin Biosynthetic Pathway.
ACS Catal. 2020 Nov 20;10(22):13445-13454. doi: 10.1021/acscatal.0c03248. Epub 2020 Nov 4.
3
Exploring the molecular basis for selective C-H functionalization in plant P450s.
Synth Syst Biotechnol. 2020 Jun 9;5(2):97-98. doi: 10.1016/j.synbio.2020.05.001. eCollection 2020 Jun.
4
Asparaginyl-tRNA Synthetase, a Novel Component of Hippo Signaling, Binds to Salvador and Enhances Yorkie-Mediated Tumorigenesis.
Front Cell Dev Biol. 2020 Feb 5;8:32. doi: 10.3389/fcell.2020.00032. eCollection 2020.
5
P450 Monooxygenases Enable Rapid Late-Stage Diversification of Natural Products C-H Bond Activation.
ChemCatChem. 2019 May 7;11(9):2226-2242. doi: 10.1002/cctc.201801829. Epub 2019 Feb 15.
6
Substrate Recognition by a Dual-Function P450 Monooxygenase GfsF Involved in FD-891 Biosynthesis.
Chembiochem. 2017 Nov 2;18(21):2179-2187. doi: 10.1002/cbic.201700429. Epub 2017 Sep 18.
8
Coordinated and Iterative Enzyme Catalysis in Fungal Polyketide Biosynthesis.
ACS Catal. 2016 Sep 2;6(9):5935-5945. doi: 10.1021/acscatal.6b01559. Epub 2016 Jul 27.
10
Mechanism of the P450-Catalyzed Oxidative Cyclization in the Biosynthesis of Griseofulvin.
ACS Catal. 2016 Jul 1;6(7):4506-4511. doi: 10.1021/acscatal.6b01068. Epub 2016 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验