Espinoza Rosa V, Haatveit Kersti Caddell, Grossman S Wald, Tan Jin Yi, McGlade Caylie A, Khatri Yogan, Newmister Sean A, Schmidt Jennifer J, Garcia-Borràs Marc, Montgomery John, Houk K N, Sherman David H
Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.
ACS Catal. 2021 Jul 2;11(13):8304-8316. doi: 10.1021/acscatal.1c01460. Epub 2021 Jun 22.
Iterative P450 enzymes are powerful biocatalysts for selective late-stage C-H oxidation of complex natural product scaffolds. These enzymes represent useful tools for selectivity and cascade reactions, facilitating direct access to core structure diversification. Recently, we reported the structure of the multifunctional bacterial P450 TamI and elucidated the molecular basis of its substrate binding and strict reaction sequence at distinct carbon atoms of the substrate. Here, we report the design and characterization of a of TamI biocatalysts, generated by mutations at Leu101, Leu244, and/or Leu295, that alter the native selectivity, step sequence, and number of reactions catalyzed, including the engineering of a variant capable of catalyzing a four-step oxidative cascade without the assistance of the flavoprotein and oxidative partner TamL. The tuned enzymes override inherent substrate reactivity, enabling catalyst-controlled C-H functionalization and alkene epoxidation of the tetramic acid-containing natural product tirandamycin. Five bioactive tirandamycin derivatives (6-10) were generated through TamI-mediated enzymatic synthesis. Quantum mechanics calculations and MD simulations provide important insights into the basis of altered selectivity and underlying biocatalytic mechanisms for enhanced continuous oxidation of the iterative P450 TamI.
迭代细胞色素P450酶是用于复杂天然产物支架选择性后期C-H氧化的强大生物催化剂。这些酶是选择性和级联反应的有用工具,有助于直接实现核心结构多样化。最近,我们报道了多功能细菌P450 TamI的结构,并阐明了其底物结合以及在底物不同碳原子处严格反应顺序的分子基础。在此,我们报道了通过在Leu101、Leu244和/或Leu295处进行突变产生的一系列TamI生物催化剂的设计与表征,这些突变改变了天然选择性、反应步骤顺序以及催化反应的数量,包括设计出一种能够在没有黄素蛋白和氧化伴侣TamL协助的情况下催化四步氧化级联反应的变体。经过调整的酶克服了固有的底物反应性,实现了含四胺酸的天然产物替拉霉素的催化剂控制的C-H官能化和烯烃环氧化。通过TamI介导的酶促合成产生了五种生物活性替拉霉素衍生物(6-10)。量子力学计算和分子动力学模拟为迭代细胞色素P450 TamI选择性改变的基础以及增强连续氧化的潜在生物催化机制提供了重要见解。