Suppr超能文献

使用深度学习和放射组学对严重和危急的 COVID-19 进行分类。

Classification of Severe and Critical Covid-19 Using Deep Learning and Radiomics.

出版信息

IEEE J Biomed Health Inform. 2020 Dec;24(12):3585-3594. doi: 10.1109/JBHI.2020.3036722. Epub 2020 Dec 4.

Abstract

OBJECTIVE

The coronavirus disease 2019 (COVID-19) is rapidly spreading inside China and internationally. We aimed to construct a model integrating information from radiomics and deep learning (DL) features to discriminate critical cases from severe cases of COVID-19 using computed tomography (CT) images.

METHODS

We retrospectively enrolled 217 patients from three centers in China, including 82 patients with severe disease and 135 with critical disease. Patients were randomly divided into a training cohort (n = 174) and a test cohort (n = 43). We extracted 102 3-dimensional radiomic features from automatically segmented lung volume and selected the significant features. We also developed a 3-dimensional DL network based on center-cropped slices. Using multivariable logistic regression, we then created a merged model based on significant radiomic features and DL scores. We employed the area under the receiver operating characteristic curve (AUC) to evaluate the model's performance. We then conducted cross validation, stratified analysis, survival analysis, and decision curve analysis to evaluate the robustness of our method.

RESULTS

The merged model can distinguish critical patients with AUCs of 0.909 (95% confidence interval [CI]: 0.859-0.952) and 0.861 (95% CI: 0.753-0.968) in the training and test cohorts, respectively. Stratified analysis indicated that our model was not affected by sex, age, or chronic disease. Moreover, the results of the merged model showed a strong correlation with patient outcomes.

SIGNIFICANCE

A model combining radiomic and DL features of the lung could help distinguish critical cases from severe cases of COVID-19.

摘要

目的

新型冠状病毒病(COVID-19)在中国境内和国际上迅速传播。我们旨在构建一个模型,该模型将从放射组学和深度学习(DL)特征中获取的信息整合在一起,使用计算机断层扫描(CT)图像来区分 COVID-19 的重症病例和危重症病例。

方法

我们从中国的三个中心回顾性地招募了 217 名患者,包括 82 名重症患者和 135 名危重症患者。患者被随机分为训练队列(n = 174)和测试队列(n = 43)。我们从自动分割的肺容积中提取了 102 个 3 维放射组学特征,并选择了有意义的特征。我们还基于中心裁剪的切片开发了一个 3 维 DL 网络。然后,我们使用多变量逻辑回归基于有意义的放射组学特征和 DL 得分创建了一个合并模型。我们使用接受者操作特征曲线(AUC)下的面积来评估模型的性能。然后,我们进行了交叉验证、分层分析、生存分析和决策曲线分析,以评估我们方法的稳健性。

结果

合并模型可以区分重症患者,其在训练和测试队列中的 AUC 分别为 0.909(95%置信区间[CI]:0.859-0.952)和 0.861(95%CI:0.753-0.968)。分层分析表明,我们的模型不受性别、年龄或慢性病的影响。此外,合并模型的结果与患者的结局具有很强的相关性。

意义

一种结合 COVID-19 肺部放射组学和 DL 特征的模型可以帮助区分重症病例和危重症病例。

相似文献

引用本文的文献

本文引用的文献

7
Care for Critically Ill Patients With COVID-19.对新冠肺炎危重症患者的护理
JAMA. 2020 Apr 21;323(15):1499-1500. doi: 10.1001/jama.2020.3633.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验