Suppr超能文献

迈向一种利用光电容积脉搏波信号的便携式无创血压监测系统。

Towards a portable-noninvasive blood pressure monitoring system utilizing the photoplethysmogram signal.

作者信息

Dagamseh Ahmad, Qananwah Qasem, Al Quran Hiam, Shaker Ibrahim Khalid

机构信息

Department of Electronics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O. Box 21163, Irbid, Jordan.

Department of Biomedical Systems and informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O. Box 21163, Irbid, Jordan.

出版信息

Biomed Opt Express. 2021 Nov 19;12(12):7732-7751. doi: 10.1364/BOE.444535. eCollection 2021 Dec 1.

Abstract

Blood pressure (BP) responds instantly to the body's conditions, such as movements, diseases or infections, and sudden excitation. Therefore, BP monitoring is a standard clinical measurement and is considered one of the fundamental health signs that assist in predicting and diagnosing several cardiovascular diseases. The traditional BP techniques (i.e. the cuff-based methods) only provide intermittent measurements over a certain period. Additionally, they cause turbulence in the blood flow, impeding the continuous BP monitoring, especially in emergency cases. In this study, an instrumentation system is designed to estimate BP noninvasively by measuring the PPG signal utilizing the optical technique. The photoplethysmogram (PPG) signals were measured and processed for ≈ 450 cases with different clinical conditions and irrespective of their health condition. A total of 13 features of the PPG signal were used to estimate the systolic and diastolic blood pressure (SBP and DBP), utilizing several machine learning techniques. The experimental results showed that the designed system is able to effectively describe the complex-embedded relationship between the features of the PPG signal and BP (SBP and DBP) with high accuracy. The mean absolute error (MAE) ± standard deviation (SD) was 4.82 ± 3.49 mmHg for the SBP and 1.37 ± 1.65 mmHg for the DBP, with a mean error (ME) of ≈ 0 mmHg. The estimation results are consistent with the Association for the American National Standards of the Association for the Advancement of Medical Instrumentation (AAMI) and achieved Grade A in the British Hypertension Society (BHS) standards for the DBP and Grade B for the SBP. Such a study effectively contributes to the scientific efforts targeting the promotion of the practical application for providing a portable-noninvasive instrumentation system for BP monitoring purposes. Once the BP is determined with sufficient accuracy, it can be utilized further in the early prediction and classification of various arrhythmias such as hypertension, tachycardia, bradycardia, and atrial fibrillation (as the early detection can be a critical issue).

摘要

血压(BP)会对身体状况立即做出反应,如运动、疾病或感染以及突然的兴奋状态。因此,血压监测是一项标准的临床测量方法,被视为有助于预测和诊断多种心血管疾病的基本健康指标之一。传统的血压测量技术(即基于袖带的方法)仅在特定时间段内提供间歇性测量。此外,它们会导致血流紊乱,妨碍连续的血压监测,尤其是在紧急情况下。在本研究中,设计了一种仪器系统,通过利用光学技术测量光电容积脉搏波(PPG)信号来无创估计血压。针对约450例不同临床状况且不论其健康状况的病例,测量并处理了光电容积脉搏波(PPG)信号。利用多种机器学习技术,共使用了PPG信号的13个特征来估计收缩压和舒张压(SBP和DBP)。实验结果表明,所设计的系统能够以高精度有效地描述PPG信号特征与血压(SBP和DBP)之间复杂的内在关系。收缩压的平均绝对误差(MAE)±标准差(SD)为4.82±3.49 mmHg,舒张压为1.37±1.65 mmHg,平均误差(ME)约为0 mmHg。估计结果与美国医疗器械促进协会(AAMI)的美国国家标准协会一致,在英国高血压协会(BHS)标准中,舒张压达到A级,收缩压达到B级。这样的研究有效地推动了旨在推广用于血压监测目的的便携式无创仪器系统实际应用的科学努力。一旦血压能够以足够的精度确定,它可进一步用于各种心律失常(如高血压、心动过速、心动过缓和心房颤动)的早期预测和分类(因为早期检测可能是一个关键问题)。

相似文献

1
Towards a portable-noninvasive blood pressure monitoring system utilizing the photoplethysmogram signal.
Biomed Opt Express. 2021 Nov 19;12(12):7732-7751. doi: 10.1364/BOE.444535. eCollection 2021 Dec 1.
2
A continuous cuffless blood pressure measurement from optimal PPG characteristic features using machine learning algorithms.
Heliyon. 2024 Mar 12;10(6):e27779. doi: 10.1016/j.heliyon.2024.e27779. eCollection 2024 Mar 30.
3
A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
Sensors (Basel). 2021 Oct 29;21(21):7207. doi: 10.3390/s21217207.
5
Boosting Algorithms based Cuff-less Blood Pressure Estimation from Clinically Relevant ECG and PPG Morphological Features.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-6. doi: 10.1109/EMBC40787.2023.10340405.
6
Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias.
Front Physiol. 2020 Sep 9;11:575407. doi: 10.3389/fphys.2020.575407. eCollection 2020.
7
DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model.
Med Biol Eng Comput. 2024 Dec;62(12):3687-3708. doi: 10.1007/s11517-024-03157-1. Epub 2024 Jul 4.

引用本文的文献

1
Investigating the correlation between smoking and blood pressure via photoplethysmography.
Biomed Eng Online. 2025 May 12;24(1):57. doi: 10.1186/s12938-025-01373-w.
2
Wearable Blood Pressure Monitoring Devices: Understanding Heterogeneity in Design and Evaluation.
IEEE Trans Biomed Eng. 2024 Dec;71(12):3569-3592. doi: 10.1109/TBME.2024.3434344. Epub 2024 Nov 21.

本文引用的文献

1
Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias.
Front Physiol. 2020 Sep 9;11:575407. doi: 10.3389/fphys.2020.575407. eCollection 2020.
2
A comparative study of photoplethysmogram and piezoelectric plethysmogram signals.
Phys Eng Sci Med. 2020 Dec;43(4):1207-1217. doi: 10.1007/s13246-020-00923-x. Epub 2020 Aug 31.
5
Wearable Piezoelectric-Based System for Continuous Beat-to-Beat Blood Pressure Measurement.
Sensors (Basel). 2020 Feb 5;20(3):851. doi: 10.3390/s20030851.
7
Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network.
Sensors (Basel). 2019 Aug 4;19(15):3420. doi: 10.3390/s19153420.
8
A Non-Invasive Continuous Blood Pressure Estimation Approach Based on Machine Learning.
Sensors (Basel). 2019 Jun 6;19(11):2585. doi: 10.3390/s19112585.
9
Blood Pressure Assessment with Differential Pulse Transit Time and Deep Learning: A Proof of Concept.
Kidney Dis (Basel). 2019 Feb;5(1):23-27. doi: 10.1159/000493478. Epub 2018 Oct 25.
10
Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
J Healthc Eng. 2018 Oct 23;2018:1548647. doi: 10.1155/2018/1548647. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验