Yakubovich Alexander, Odinokov Alexey, Nikolenko Sergey, Jung Yongsik, Choi Hyeonho
Samsung R&D Institute Russia (SRR), Samsung Electronics, Moscow, Russia.
Steklov Institute of Mathematics at Saint Petersburg, Saint Petersburg, Russia.
Front Chem. 2021 Dec 23;9:800133. doi: 10.3389/fchem.2021.800133. eCollection 2021.
We present a computational workflow based on quantum chemical calculations and generative models based on deep neural networks for the discovery of novel materials. We apply the developed workflow to search for molecules suitable for the fusion of triplet-triplet excitations (triplet-triplet fusion, TTF) in blue OLED devices. By applying generative machine learning models, we have been able to pinpoint the most promising regions of the chemical space for further exploration. Another neural network based on graph convolutions was trained to predict excitation energies; with this network, we estimate the alignment of energy levels and filter molecules before running time-consuming quantum chemical calculations. We present a comprehensive computational evaluation of several generative models, choosing a modification of the Junction Tree VAE (JT-VAE) as the best one in this application. The proposed approach can be useful for computer-aided design of materials with energy level alignment favorable for efficient energy transfer, triplet harvesting, and exciton fusion processes, which are crucial for the development of the next generation OLED materials.
我们提出了一种基于量子化学计算和基于深度神经网络的生成模型的计算工作流程,用于发现新型材料。我们将开发的工作流程应用于寻找适用于蓝色OLED器件中三重态-三重态激发融合(三重态-三重态融合,TTF)的分子。通过应用生成式机器学习模型,我们能够确定化学空间中最有前景的区域,以便进一步探索。训练了另一个基于图卷积的神经网络来预测激发能;利用这个网络,我们在进行耗时的量子化学计算之前估计能级对齐情况并筛选分子。我们对几种生成模型进行了全面的计算评估,选择了连接树变分自编码器(JT-VAE)的一种修改版本作为该应用中最佳的模型。所提出的方法对于具有有利于高效能量转移、三重态捕获和激子融合过程的能级对齐的材料的计算机辅助设计可能是有用的,这些过程对于下一代OLED材料的开发至关重要。