Graduate School of Medicine, Kyoto University, 53 Shogoin-kawaharacho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan.
HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, Kobe-shi, Hyogo 650-0047, Japan.
J Chem Inf Model. 2023 Dec 11;63(23):7392-7400. doi: 10.1021/acs.jcim.3c01220. Epub 2023 Nov 22.
Molecular generation is crucial for advancing drug discovery, materials science, and chemical exploration. It expedites the search for new drug candidates, facilitates tailored material creation, and enhances our understanding of molecular diversity. By employing artificial intelligence techniques such as molecular generative models based on molecular graphs, researchers have tackled the challenge of identifying efficient molecules with desired properties. Here, we propose a new molecular generative model combining a graph-based deep neural network and a reinforcement learning technique. We evaluated the validity, novelty, and optimized physicochemical properties of the generated molecules. Importantly, the model explored uncharted regions of chemical space, allowing for the efficient discovery and design of new molecules. This innovative approach has considerable potential to revolutionize drug discovery, materials science, and chemical research for accelerating scientific innovation. By leveraging advanced techniques and exploring previously unexplored chemical spaces, this study offers promising prospects for the efficient discovery and design of new molecules in the field of drug development.
分子生成对于推进药物发现、材料科学和化学探索至关重要。它加速了新药物候选物的寻找,促进了定制材料的创造,并加深了我们对分子多样性的理解。通过运用人工智能技术,如基于分子图的分子生成模型,研究人员解决了识别具有所需性质的有效分子的难题。在这里,我们提出了一种新的分子生成模型,它结合了基于图的深度学习网络和强化学习技术。我们评估了生成分子的有效性、新颖性和优化的物理化学性质。重要的是,该模型探索了化学空间的未知区域,从而能够高效地发现和设计新分子。这种创新方法具有彻底改变药物发现、材料科学和化学研究的巨大潜力,能够加速科学创新。通过利用先进的技术和探索以前未知的化学空间,这项研究为药物开发领域中新型分子的高效发现和设计提供了有希望的前景。