Suppr超能文献

预测急诊科出院的新冠肺炎患者30天内再入院情况:一项全国性回顾性队列研究。

Predicting 30-day return hospital admissions in patients with COVID-19 discharged from the emergency department: A national retrospective cohort study.

作者信息

Beiser David G, Jarou Zachary J, Kassir Alaa A, Puskarich Michael A, Vrablik Marie C, Rosenman Elizabeth D, McDonald Samuel A, Meltzer Andrew C, Courtney D Mark, Kabrhel Christopher, Kline Jeffrey A

机构信息

Section of Emergency Medicine University of Chicago Chicago Illinois USA.

Department of Emergency Medicine St. Joseph Mercy Ann Arbor Hospital University of Michigan Medical School Ann Arbor Michigan USA.

出版信息

J Am Coll Emerg Physicians Open. 2021 Dec 29;2(6):e12595. doi: 10.1002/emp2.12595. eCollection 2021 Dec.

Abstract

OBJECTIVES

Identification of patients with coronavirus disease 2019 (COVID-19) at risk for deterioration after discharge from the emergency department (ED) remains a clinical challenge. Our objective was to develop a prediction model that identifies patients with COVID-19 at risk for return and hospital admission within 30 days of ED discharge.

METHODS

We performed a retrospective cohort study of discharged adult ED patients (n = 7529) with SARS-CoV-2 infection from 116 unique hospitals contributing to the National Registry of Suspected COVID-19 in Emergency Care. The primary outcome was return hospital admission within 30 days. Models were developed using classification and regression tree (CART), gradient boosted machine (GBM), random forest (RF), and least absolute shrinkage and selection (LASSO) approaches.

RESULTS

Among patients with COVID-19 discharged from the ED on their index encounter, 571 (7.6%) returned for hospital admission within 30 days. The machine-learning (ML) models (GBM, RF, and LASSO) performed similarly. The RF model yielded a test area under the receiver operating characteristic curve of 0.74 (95% confidence interval [CI], 0.71-0.78), with a sensitivity of 0.46 (95% CI, 0.39-0.54) and a specificity of 0.84 (95% CI, 0.82-0.85). Predictive variables, including lowest oxygen saturation, temperature, or history of hypertension, diabetes, hyperlipidemia, or obesity, were common to all ML models.

CONCLUSIONS

A predictive model identifying adult ED patients with COVID-19 at risk for return for return hospital admission within 30 days is feasible. Ensemble/boot-strapped classification methods (eg, GBM, RF, and LASSO) outperform the single-tree CART method. Future efforts may focus on the application of ML models in the hospital setting to optimize the allocation of follow-up resources.

摘要

目的

识别2019冠状病毒病(COVID-19)患者在急诊科(ED)出院后病情恶化的风险仍然是一项临床挑战。我们的目标是开发一种预测模型,以识别COVID-19患者在ED出院后30天内有再次就诊和住院风险的患者。

方法

我们对来自116家独特医院的7529例出院成年ED患者进行了一项回顾性队列研究,这些患者感染了严重急性呼吸综合征冠状病毒2(SARS-CoV-2),数据贡献给了国家急诊护理疑似COVID-19登记处。主要结局是30天内再次住院。使用分类与回归树(CART)、梯度提升机(GBM)、随机森林(RF)和最小绝对收缩与选择算子(LASSO)方法开发模型。

结果

在首次就诊时从ED出院的COVID-19患者中,571例(7.6%)在30天内再次住院。机器学习(ML)模型(GBM、RF和LASSO)表现相似。RF模型在受试者工作特征曲线下的测试面积为〇.74(95%置信区间[CI]〇.71 -〇.78),敏感性为〇.46(95%CI,〇.39 -〇.54),特异性为〇.84(95%CI,〇.82 -〇.85)。预测变量包括最低血氧饱和度、体温或高血压、糖尿病、高脂血症或肥胖病史等在所有ML模型中都很常见。

结论

开发一种预测模型来识别COVID-19成年ED患者在30天内有再次住院风险是可行的。集成/自展分类方法(如GBM、RF和LASSO)优于单树CART方法。未来的工作可能集中在将ML模型应用于医院环境,以优化后续资源的分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b03/8716570/6e8fba2f21b1/EMP2-2-e12595-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验