CEFH, Norwegian Institute of Public Health, P.O.Box 222 Skøyen, N-0213 Oslo, Norway.
CEMO, University of Oslo, Oslo, Norway.
Psychometrika. 2022 Sep;87(3):799-834. doi: 10.1007/s11336-021-09816-8. Epub 2022 Jan 10.
In psychometrics, the canonical use of conditional likelihoods is for the Rasch model in measurement. Whilst not disputing the utility of conditional likelihoods in measurement, we examine a broader class of problems in psychometrics that can be addressed via conditional likelihoods. Specifically, we consider cluster-level endogeneity where the standard assumption that observed explanatory variables are independent from latent variables is violated. Here, "cluster" refers to the entity characterized by latent variables or random effects, such as individuals in measurement models or schools in multilevel models and "unit" refers to the elementary entity such as an item in measurement. Cluster-level endogeneity problems can arise in a number of settings, including unobserved confounding of causal effects, measurement error, retrospective sampling, informative cluster sizes, missing data, and heteroskedasticity. Severely inconsistent estimation can result if these challenges are ignored.
在心理计量学中,条件似然的典型用途是在测量中用于 Rasch 模型。虽然我们不否认条件似然在测量中的实用性,但我们研究了心理计量学中更广泛的一类问题,这些问题可以通过条件似然来解决。具体来说,我们考虑了聚类水平的内生性问题,其中标准假设是观察到的解释变量与潜在变量是独立的,这一假设被违反了。这里,“聚类”是指由潜在变量或随机效应所描述的实体,例如测量模型中的个体或多层模型中的学校,而“单位”是指基本实体,例如测量中的项目。聚类水平的内生性问题可能出现在许多情况下,包括因果效应的未观察到的混杂、测量误差、回顾性抽样、信息性聚类大小、缺失数据和异方差性。如果忽略这些挑战,可能会导致严重的不一致估计。