Chen Haotian, Kätelhön Enno, Compton Richard G
Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, Great Britain.
Accenture GmbH, Campus Kronberg, Kronberg im Taunus 61476, Germany.
Anal Chem. 2023 Aug 29;95(34):12826-12834. doi: 10.1021/acs.analchem.3c01936. Epub 2023 Aug 17.
Physics-informed neural networks are used to characterize the mass transport to the rotating disk electrode (RDE), the most widely employed hydrodynamic electrode in electroanalysis. The PINN approach was first quantitatively verified via 1D simulations under the Levich approximation for cyclic voltammetry and chronoamperometry, allowing comparison of the results with finite difference simulations and analytical equations. However, the Levich approximation is only accurate for high Schmidt numbers ( > 1000). The PINN approach allowed consideration of smaller , achieving an analytical level of accuracy (error <0.1%) comparable with independent numerical evaluation and confirming that the errors in the Levich equation can be as high as 3% when = 1000 for rapidly diffusing species in aqueous solution. Entirely novel, the PINNs permit the solution of the 2D diffusion equation under cylindrical geometry incorporating radial diffusion and reveal the rotating disk electrode edge effect as a consequence of the nonuniform accessibility of the disc with greater currents flowing near the extremities. The contribution to the total current is quantified as a function of the rotation speed, disk radius, and analyte diffusion coefficient. The success in extending the theory for the rotating disk electrode beyond the Levich equation shows that PINNs can be an easier and more powerful substitute for conventional methods, both analytical and simulation based.
物理信息神经网络被用于描述传质到旋转圆盘电极(RDE)的过程,旋转圆盘电极是电分析中应用最广泛的流体动力学电极。PINN方法首先通过在循环伏安法和计时电流法的Levich近似下进行的一维模拟进行了定量验证,从而能够将结果与有限差分模拟和解析方程进行比较。然而,Levich近似仅在高施密特数(>1000)时才准确。PINN方法能够考虑较小的施密特数,达到与独立数值评估相当的分析精度水平(误差<0.1%),并证实当水溶液中快速扩散的物种施密特数为1000时,Levich方程中的误差可能高达3%。完全新颖的是,PINN能够求解包含径向扩散的圆柱几何形状下的二维扩散方程,并揭示旋转圆盘电极边缘效应是由于圆盘的可及性不均匀,在边缘附近有更大的电流流动。对总电流的贡献作为转速、圆盘半径和分析物扩散系数的函数进行了量化。将旋转圆盘电极理论扩展到Levich方程之外的成功表明,PINN可以成为传统分析和基于模拟方法的更简单、更强大的替代方法。