School of Psychology.
Kellogg School of Management.
Psychol Methods. 2022 Oct;27(5):895-916. doi: 10.1037/met0000295. Epub 2022 Jan 10.
In high stakes assessments of personality and similar attributes, test takers may engage in impression management (aka This article proposes to consider responses of every test taker as a potential mixture of (or retrieved) answers to questions, and answers intended to create a desired impression, with each type of response characterized by its own distribution and factor structure. Depending on the particular mix of response types in the test taker profile, in the "real" and "ideal" profiles are defined. This approach overcomes the limitation of existing psychometric models that assume faking behavior to be consistent across test items. To estimate the proposed faking-as-grade-of-membership (F-GoM) model, two-level factor mixture analysis is used, with two latent classes at the response (within) level, allowing grade of membership in "real" and "ideal" profiles, each underpinned by its own factor structure, at the person (between) level. For collected data, units of analysis can be item or scale scores, with the latter enabling analysis of questionnaires with many measured scales. The performance of the F-GoM model is evaluated in a simulation study, and compared against existing methods for statistical control of faking in an empirical application using archival recruitment data, which supported the validity of latent factors and classes assumed by the model using multiple control variables. The proposed approach is particularly useful for high-stakes assessment data and can be implemented with standard software packages. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
在人格和类似属性的高风险评估中,测试者可能会进行印象管理(即本文建议将每个测试者的反应视为潜在的混合(或检索)对问题的回答,以及旨在创造理想印象的回答,每种类型的回答都有自己的分布和因素结构。根据测试者档案中反应类型的特定组合,定义了“真实”和“理想”档案中的 。这种方法克服了现有心理计量模型的局限性,这些模型假设伪造行为在测试项目中是一致的。为了估计拟议的伪造作为成员等级(F-GoM)模型,使用两水平因素混合分析,在反应(内部)水平上有两个潜在类别,允许在“真实”和“理想”档案中具有成员等级,每个档案都有自己的因素结构,在人(之间)水平上。对于收集的数据,分析单位可以是项目或量表分数,后者可以分析具有许多测量量表的问卷。在模拟研究中评估了 F-GoM 模型的性能,并在使用档案招聘数据的实证应用中与现有的伪造统计控制方法进行了比较,该应用支持了模型假设的潜在因素和类别的有效性,使用了多个控制变量。该方法特别适用于高风险评估数据,并且可以使用标准软件包来实现。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。