Department of Bioengineering, School of Engineering, University of California, Merced, Merced, California, USA; Quantitative Systems Biology Ph.D. Program, University of California, Merced, Merced, California, USA.
Department of Bioengineering, School of Engineering, University of California, Merced, Merced, California, USA.
J Biol Chem. 2022 Mar;298(3):101566. doi: 10.1016/j.jbc.2022.101566. Epub 2022 Jan 8.
ASC is an essential adaptor of the inflammasome, a micrometer-size multiprotein complex that processes proinflammatory cytokines. Inflammasome formation depends on ASC self-association into large assemblies via homotypic interactions of its two death domains, PYD and CARD. ASCb, an alternative splicing isoform, activates the inflammasome to a lesser extent compared with ASC. Thus, it has been postulated that adaptor isoforms differentially regulate inflammasome function. At the amino acid level, ASC and ASCb differ only in the length of the linker connecting the two death domains. To understand inflammasome regulation at the molecular level, we investigated the self-association properties of ASC and ASCb using real-time NMR, dynamic light scattering (DLS), size-exclusion chromatography, and transmission electron microscopy (TEM). The NMR data indicate that ASC self-association is faster than that of ASCb; a kinetic model for this oligomerization results in differing values for both the reaction order and the rate constants. Furthermore, DLS analysis indicates that ASC self-associates into more compact macrostructures compared with ASCb. Finally, TEM data show that ASCb has a reduced tendency to form densely packed filaments relative to ASC. Overall, these differences can only be explained by an effect of the linker length, as the NMR results show structural equivalence of the PYD and CARD in both proteins. The effect of linker length was corroborated by molecular docking with the procaspase-1 CARD domain. Altogether, our results indicate that ASC's faster and less polydisperse polymerization is more efficient, plausibly explaining inflammasome activation differences by ASC isoforms at the molecular level.
ASC 是炎症小体的一个必需衔接子,炎症小体是一种微米大小的多蛋白复合物,可加工促炎细胞因子。炎症小体的形成依赖于 ASC 通过其两个死亡结构域(PYD 和 CARD)的同源相互作用自组装成大复合物。与 ASC 相比,替代剪接异构体 ASCb 对炎症小体的激活作用较弱。因此,有人假设衔接子异构体可差异调节炎症小体的功能。在氨基酸水平上,ASC 和 ASCb 仅在连接两个死亡结构域的连接子长度上有所不同。为了在分子水平上理解炎症小体的调控,我们使用实时 NMR、动态光散射 (DLS)、分子筛层析和透射电子显微镜 (TEM) 研究了 ASC 和 ASCb 的自组装特性。NMR 数据表明 ASC 的自组装速度快于 ASCb;该寡聚化的动力学模型导致反应级数和速率常数的值都有所不同。此外,DLS 分析表明 ASC 自组装成比 ASCb 更紧凑的宏观结构。最后,TEM 数据表明,与 ASC 相比,ASCb 形成密集堆积的丝状结构的趋势降低。总体而言,这些差异只能用连接子长度的影响来解释,因为 NMR 结果表明两种蛋白的 PYD 和 CARD 结构上是等同的。分子对接与前半胱氨酸蛋白酶-1 CARD 结构域的结果证实了连接子长度的影响。总之,我们的结果表明,ASC 更快且多分散性更低的聚合反应更有效,这可能在分子水平上解释了 ASC 异构体激活炎症小体的差异。