Suppr超能文献

通过二维几何模板控制类心脏器官的形态和功能。

Controlling Morphology and Functions of Cardiac Organoids by Two-Dimensional Geometrical Templates.

机构信息

Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA.

BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA.

出版信息

Cells Tissues Organs. 2023;212(1):64-73. doi: 10.1159/000521787. Epub 2022 Jan 10.

Abstract

Traditionally, tissue-specific organoids are generated as 3D aggregates of stem cells embedded in Matrigel or hydrogels, and the aggregates eventually end up a spherical shape and suspended in the matrix. Lack of geometrical control of organoid formation makes these spherical organoids limited for modeling the tissues with complex shapes. To address this challenge, we developed a new method to generate 3D spatial-organized cardiac organoids from 2D micropatterned human induced pluripotent stem cell (hiPSC) colonies, instead of directly from 3D stem cell aggregates. This new approach opens the possibility to create cardiac organoids that are templated by 2D non-spherical geometries, which potentially provides us a deeper understanding of biophysical controls on developmental organogenesis. Here, we designed 2D geometrical templates with quadrilateral shapes and pentagram shapes that had same total area but different geometrical shapes. Using this templated substrate, we grew cardiac organoids from hiPSCs and collected a series of parameters to characterize morphological and functional properties of the cardiac organoids. In quadrilateral templates, we found that increasing the aspect ratio impaired cardiac tissue 3D self-assembly, but the elongated geometry improved the cardiac contractile functions. However, in pentagram templates, cardiac organoid structure and function were optimized with a specific geometry of an ideal star shape. This study will shed a light on "organogenesis-by-design" by increasing the intricacy of starting templates from external geometrical cues to improve the organoid morphogenesis and functionality.

摘要

传统上,组织特异性类器官是通过将干细胞嵌入 Matrigel 或水凝胶中形成的 3D 聚集体产生的,最终聚集体会形成球形并悬浮在基质中。类器官形成缺乏几何形状的控制,这使得这些球形类器官在模拟具有复杂形状的组织方面受到限制。为了解决这个挑战,我们开发了一种从二维微图案化的人诱导多能干细胞 (hiPSC) 集落而不是直接从 3D 干细胞聚集体生成 3D 空间组织的心脏类器官的新方法。这种新方法为创建由 2D 非球形几何形状模板化的心脏类器官提供了可能性,这可能为我们提供了对发育器官发生的生物物理控制的更深入理解。在这里,我们设计了具有四边形和五边形形状的 2D 几何模板,它们具有相同的总面积但具有不同的几何形状。使用这种模板化基板,我们从 hiPSCs 中生长心脏类器官,并收集了一系列参数来表征心脏类器官的形态和功能特性。在四边形模板中,我们发现增加纵横比会损害心脏组织的 3D 自组装,但拉长的几何形状会提高心脏收缩功能。然而,在五角星模板中,心脏类器官的结构和功能通过理想星形状的特定几何形状得到优化。这项研究将通过从外部几何线索增加起始模板的复杂性来提高类器官形态发生和功能,为“设计器官发生”提供启示。

相似文献

2
Engineering spatial-organized cardiac organoids for developmental toxicity testing.工程化空间组织的心脏类器官用于发育毒性测试。
Stem Cell Reports. 2021 May 11;16(5):1228-1244. doi: 10.1016/j.stemcr.2021.03.013. Epub 2021 Apr 22.

本文引用的文献

3
Cardioids reveal self-organizing principles of human cardiogenesis.心形线揭示了人类心脏发生的自组织原理。
Cell. 2021 Jun 10;184(12):3299-3317.e22. doi: 10.1016/j.cell.2021.04.034. Epub 2021 May 20.
5
Engineering spatial-organized cardiac organoids for developmental toxicity testing.工程化空间组织的心脏类器官用于发育毒性测试。
Stem Cell Reports. 2021 May 11;16(5):1228-1244. doi: 10.1016/j.stemcr.2021.03.013. Epub 2021 Apr 22.
6
Engineering organoids.工程化类器官
Nat Rev Mater. 2021;6(5):402-420. doi: 10.1038/s41578-021-00279-y. Epub 2021 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验