Suppr超能文献

使用人类多能干细胞生成具有空间图案的早期心脏类器官。

Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells.

机构信息

Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York, USA.

Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA.

出版信息

Nat Protoc. 2018 Apr;13(4):723-737. doi: 10.1038/nprot.2018.006. Epub 2018 Mar 15.

Abstract

The creation of human induced pluripotent stem cells (hiPSCs) has provided an unprecedented opportunity to study tissue morphogenesis and organ development through 'organogenesis-in-a-dish'. Current approaches to cardiac organoid engineering rely on either direct cardiac differentiation from embryoid bodies (EBs) or generation of aligned cardiac tissues from predifferentiated cardiomyocytes from monolayer hiPSCs. To experimentally model early cardiac organogenesis in vitro, our protocol combines biomaterials-based cell patterning with stem cell organoid engineering. 3D cardiac microchambers are created from 2D hiPSC colonies; these microchambers approximate an early-development heart with distinct spatial organization and self-assembly. With proper training in photolithography microfabrication, maintenance of human pluripotent stem cells, and cardiac differentiation, a graduate student with guidance will likely be able to carry out this experimental protocol, which requires ∼3 weeks. We envisage that this in vitro model of human early heart development could serve as an embryotoxicity screening assay in drug discovery, regulation, and prescription for healthy fetal development. We anticipate that, when applied to hiPSC lines derived from patients with inherited diseases, this protocol can be used to study the disease mechanisms of cardiac malformations at an early stage of embryogenesis.

摘要

人类诱导多能干细胞(hiPSCs)的诞生为通过“类器官培养中的器官发生”来研究组织形态发生和器官发育提供了前所未有的机会。目前的心脏类器官工程方法依赖于从胚状体(EBs)直接进行心脏分化,或从单层 hiPSC 预先分化的心肌细胞生成定向的心脏组织。为了在体外实验性模拟早期心脏发生,我们的方案结合了基于生物材料的细胞图案化和干细胞类器官工程。通过 2D hiPSC 集落创建 3D 心脏微室;这些微室具有独特的空间组织和自组装,近似于早期发育的心脏。经过适当的光刻微加工培训、人类多能干细胞的维持和心脏分化,在指导下,研究生可能能够开展这项需要大约 3 周时间的实验方案。我们设想,这种人类早期心脏发育的体外模型可以作为药物发现、调控和促进健康胎儿发育的胚胎毒性筛选检测方法。我们预计,当应用于源自遗传性疾病患者的 hiPSC 系时,该方案可用于在胚胎发生的早期阶段研究心脏畸形的疾病机制。

相似文献

引用本文的文献

3
Towards advanced regenerative therapeutics to tackle cardio-cerebrovascular diseases.迈向治疗心脑血管疾病的先进再生疗法。
Am Heart J Plus. 2025 Mar 1;53:100520. doi: 10.1016/j.ahjo.2025.100520. eCollection 2025 May.
4
Application of human cardiac organoids in cardiovascular disease research.人类心脏类器官在心血管疾病研究中的应用。
Front Cell Dev Biol. 2025 Mar 31;13:1564889. doi: 10.3389/fcell.2025.1564889. eCollection 2025.
7
Synthetic embryology of the human heart.人类心脏的合成胚胎学。
Front Cell Dev Biol. 2025 Jan 28;12:1478549. doi: 10.3389/fcell.2024.1478549. eCollection 2024.
10
Engineering the 3D structure of organoids.构建类器官的三维结构。
Stem Cell Reports. 2025 Jan 14;20(1):102379. doi: 10.1016/j.stemcr.2024.11.009. Epub 2024 Dec 19.

本文引用的文献

3
Disease Modeling in Stem Cell-Derived 3D Organoid Systems.基于干细胞的 3D 类器官系统的疾病建模。
Trends Mol Med. 2017 May;23(5):393-410. doi: 10.1016/j.molmed.2017.02.007. Epub 2017 Mar 21.
5
Organoids: A historical perspective of thinking in three dimensions.类器官:三维思维的历史视角。
J Cell Biol. 2017 Jan 2;216(1):31-40. doi: 10.1083/jcb.201610056. Epub 2016 Dec 28.
6
Designer matrices for intestinal stem cell and organoid culture.肠道干细胞和类器官培养的设计基质。
Nature. 2016 Nov 24;539(7630):560-564. doi: 10.1038/nature20168. Epub 2016 Nov 16.
7
Self-organization of human embryonic stem cells on micropatterns.微图案上人胚胎干细胞的自组织。
Nat Protoc. 2016 Nov;11(11):2223-2232. doi: 10.1038/nprot.2016.131. Epub 2016 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验