Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania.
Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania.
Int J Mol Sci. 2021 Dec 31;23(1):451. doi: 10.3390/ijms23010451.
The possibility to artificially adjust and fine-tune gene expression is one of the key milestones in bioengineering, synthetic biology, and advanced medicine. Since the effects of proteins or other transgene products depend on the dosage, controlled gene expression is required for any applications, where even slight fluctuations of the transgene product impact its function or other critical cell parameters. In this context, physical techniques demonstrate optimistic perspectives, and pulsed electric field technology is a potential candidate for a noninvasive, biophysical gene regulator, exploiting an easily adjustable pulse generating device. We exposed mammalian cells, transfected with a NF-κB pathway-controlled transcription system, to a range of microsecond-duration pulsed electric field parameters. To prevent toxicity, we used protocols that would generate relatively mild physical stimulation. The present study, for the first time, proves the principle that microsecond-duration pulsed electric fields can alter single-gene expression in plasmid context in mammalian cells without significant damage to cell integrity or viability. Gene expression might be upregulated or downregulated depending on the cell line and parameters applied. This noninvasive, ligand-, cofactor-, nanoparticle-free approach enables easily controlled direct electrostimulation of the construct carrying the gene of interest; the discovery may contribute towards the path of simplification of the complexity of physical systems in gene regulation and create further synergies between electronics, synthetic biology, and medicine.
人工调节和微调基因表达的可能性是生物工程、合成生物学和先进医学的关键里程碑之一。由于蛋白质或其他转基因产物的效果取决于剂量,因此任何应用都需要受控的基因表达,其中即使转基因产物的微小波动也会影响其功能或其他关键细胞参数。在这种情况下,物理技术显示出乐观的前景,而脉冲电场技术是一种潜在的候选非侵入性生物物理基因调节剂,利用易于调节的脉冲产生装置。我们将转染了 NF-κB 途径控制的转录系统的哺乳动物细胞暴露于一系列微秒持续时间的脉冲电场参数下。为了防止毒性,我们使用了会产生相对温和的物理刺激的方案。本研究首次证明了微秒持续时间的脉冲电场可以在不显著损害细胞完整性或活力的情况下改变质粒背景中的单基因表达的原理。基因表达可能会被上调或下调,具体取决于细胞系和应用的参数。这种非侵入性、无配体、无辅助因子、无纳米粒子的方法可实现对携带感兴趣基因的构建体的直接电刺激的轻松控制;这一发现可能有助于简化基因调控中物理系统复杂性的途径,并在电子学、合成生物学和医学之间创造更多的协同作用。