National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Int J Mol Sci. 2022 Jan 5;23(1):569. doi: 10.3390/ijms23010569.
Drought is the main abiotic stress that constrains sugarcane growth and production. To understand the molecular mechanisms that govern drought stress, we performed a comprehensive comparative analysis of physiological changes and transcriptome dynamics related to drought stress of highly drought-resistant (ROC22, cultivated genotype) and weakly drought-resistant (Badila, wild genotype) sugarcane, in a time-course experiment (0 h, 4 h, 8 h, 16 h and 32 h). Physiological examination reviewed that ROC22, which shows superior drought tolerance relative to Badila, has high performance photosynthesis and better anti-oxidation defenses under drought conditions. The time series dataset enabled the identification of important hubs and connections of gene expression networks. We identified 36,956 differentially expressed genes (DEGs) in response to drought stress. Of these, 15,871 DEGs were shared by the two genotypes, and 16,662 and 4423 DEGs were unique to ROC22 and Badila, respectively. Abscisic acid (ABA)-activated signaling pathway, response to water deprivation, response to salt stress and photosynthesis-related processes showed significant enrichment in the two genotypes under drought stress. At 4 h of drought stress, ROC22 had earlier stress signal transduction and specific up-regulation of the processes response to ABA, L-proline biosynthesis and MAPK signaling pathway-plant than Badila. WGCNA analysis used to compile a gene regulatory network for ROC22 and Badila leaves exposed to drought stress revealed important candidate genes, including several classical transcription factors: , , , , and , which are related to some antioxidants and trehalose, and other genes. These results provide new insights and resources for future research and cultivation of drought-tolerant sugarcane varieties.
干旱是限制甘蔗生长和生产的主要非生物胁迫。为了了解调控干旱胁迫的分子机制,我们对高抗旱性(ROC22,栽培品种)和弱抗旱性(Badila,野生品种)甘蔗的干旱胁迫相关的生理变化和转录组动态进行了全面比较分析,在时间过程实验(0 h、4 h、8 h、16 h 和 32 h)中。生理检查表明,ROC22 相对于 Badila 表现出更高的耐旱性,在干旱条件下具有更高的光合作用性能和更好的抗氧化防御能力。时间序列数据集使我们能够识别基因表达网络的重要枢纽和连接。我们鉴定了 36956 个响应干旱胁迫的差异表达基因(DEGs)。其中,15871 个 DEGs 在两种基因型中共享,16662 个和 4423 个 DEGs 分别在 ROC22 和 Badila 中特异表达。干旱胁迫下,ABA 激活信号通路、对水分胁迫的响应、对盐胁迫的响应和光合作用相关过程在两种基因型中均显著富集。在干旱胁迫 4 h 时,ROC22 比 Badila 更早地进行胁迫信号转导,并特异性地上调了对 ABA 的响应、L-脯氨酸生物合成和 MAPK 信号通路-植物的过程。用于编译 ROC22 和 Badila 叶片暴露于干旱胁迫的基因调控网络的 WGCNA 分析揭示了重要的候选基因,包括几个经典的转录因子: 、 、 、 、 、 ,它们与一些抗氧化剂和海藻糖有关,以及其他基因。这些结果为未来抗旱甘蔗品种的研究和培育提供了新的见解和资源。