Suppr超能文献

与挪威春季燕麦籽粒中脱氧雪腐镰刀菌烯醇水平相关的天气模式:一种函数数据方法。

Weather Patterns Associated with DON Levels in Norwegian Spring Oat Grain: A Functional Data Approach.

作者信息

Hjelkrem Anne-Grete Roer, Aamot Heidi Udnes, Lillemo Morten, Sørensen Espen Sannes, Brodal Guro, Russenes Aina Lundon, Edwards Simon G, Hofgaard Ingerd Skow

机构信息

Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway.

Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway.

出版信息

Plants (Basel). 2021 Dec 27;11(1):73. doi: 10.3390/plants11010073.

Abstract

is regarded as the main deoxynivalenol (DON) producer in Norwegian oats, and high levels of DON are occasionally recorded in oat grains. Weather conditions in the period around flowering are reported to have a high impact on the development of Fusarium head blight (FHB) and DON in cereal grains. Thus, it would be advantageous if the risk of DON contamination of oat grains could be predicted based on weather data. We conducted a functional data analysis of weather-based time series data linked to DON content in order to identify weather patterns associated with increased DON levels. Since flowering date was not recorded in our dataset, a mathematical model was developed to predict phenological growth stages in Norwegian spring oats. Through functional data analysis, weather patterns associated with DON content in the harvested grain were revealed mainly from about three weeks pre-flowering onwards. Oat fields with elevated DON levels generally had warmer weather around sowing, and lower temperatures and higher relative humidity or rain prior to flowering onwards, compared to fields with low DON levels. Our results are in line with results from similar studies presented for FHB epidemics in wheat. Functional data analysis was found to be a useful tool to reveal weather patterns of importance for DON development in oats.

摘要

被认为是挪威燕麦中主要的脱氧雪腐镰刀菌烯醇(DON)产生菌,燕麦籽粒中偶尔会检测到高水平的DON。据报道,开花期前后的天气状况对谷物中镰刀菌穗腐病(FHB)和DON的发生发展有很大影响。因此,如果能根据天气数据预测燕麦籽粒被DON污染的风险,将是很有利的。我们对与DON含量相关的基于天气的时间序列数据进行了函数数据分析,以确定与DON水平升高相关的天气模式。由于我们的数据集中没有记录开花日期,因此开发了一个数学模型来预测挪威春燕麦的物候生长阶段。通过函数数据分析,发现收获籽粒中与DON含量相关的天气模式主要从开花前三周左右开始显现。与DON水平较低的田地相比,DON水平较高的燕麦田在播种前后天气通常较温暖,而在开花期之前温度较低、相对湿度较高或有降雨。我们的结果与针对小麦FHB流行情况的类似研究结果一致。函数数据分析被认为是揭示对燕麦中DON形成具有重要意义的天气模式的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a603/8747184/32927adfc497/plants-11-00073-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验