Suppr超能文献

基于深度融合网络的图像和加速度计传感器数据融合的健壮人体活动识别。

Robust Human Activity Recognition by Integrating Image and Accelerometer Sensor Data Using Deep Fusion Network.

机构信息

Department of Software, Gachon University, Seongnam 13120, Korea.

Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea.

出版信息

Sensors (Basel). 2021 Dec 28;22(1):174. doi: 10.3390/s22010174.

Abstract

Studies on deep-learning-based behavioral pattern recognition have recently received considerable attention. However, if there are insufficient data and the activity to be identified is changed, a robust deep learning model cannot be created. This work contributes a generalized deep learning model that is robust to noise not dependent on input signals by extracting features through a deep learning model for each heterogeneous input signal that can maintain performance while minimizing preprocessing of the input signal. We propose a hybrid deep learning model that takes heterogeneous sensor data, an acceleration sensor, and an image as inputs. For accelerometer data, we use a convolutional neural network (CNN) and convolutional block attention module models (CBAM), and apply bidirectional long short-term memory and a residual neural network. The overall accuracy was 94.8% with a skeleton image and accelerometer data, and 93.1% with a skeleton image, coordinates, and accelerometer data after evaluating nine behaviors using the Berkeley Multimodal Human Action Database (MHAD). Furthermore, the accuracy of the investigation was revealed to be 93.4% with inverted images and 93.2% with white noise added to the accelerometer data. Testing with data that included inversion and noise data indicated that the suggested model was robust, with a performance deterioration of approximately 1%.

摘要

基于深度学习的行为模式识别研究最近受到了广泛关注。然而,如果数据不足且要识别的活动发生变化,则无法创建稳健的深度学习模型。这项工作贡献了一种通用的深度学习模型,该模型通过为每个异构输入信号提取特征,通过深度学习模型实现对噪声的鲁棒性,而不依赖于输入信号,从而最小化输入信号的预处理。我们提出了一种混合深度学习模型,该模型可以接受异构传感器数据(加速度传感器和图像)作为输入。对于加速度计数据,我们使用卷积神经网络(CNN)和卷积块注意模块模型(CBAM),并应用双向长短期记忆和残差神经网络。使用伯克利多模态人体动作数据库(MHAD)评估了九种行为后,使用骨架图像和加速度计数据的整体准确率为 94.8%,使用骨架图像,坐标和加速度计数据的准确率为 93.1%。此外,通过对倒置图像和向加速度计数据添加白噪声进行研究,结果表明准确率为 93.4%和 93.2%。使用包含反转和噪声数据的测试表明,所提出的模型具有鲁棒性,性能下降约 1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d5b/8747696/494e0dbd9363/sensors-22-00174-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验