Wang Jinwang, Meng Lingxuan, Li Weijia, Yang Wen, Yu Lei, Xia Gui-Song
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):1294-1301. doi: 10.1109/TPAMI.2022.3162583. Epub 2022 Dec 5.
Extracting building footprints from aerial images is essential for precise urban mapping with photogrammetric computer vision technologies. Existing approaches mainly assume that the roof and footprint of a building are well overlapped, which may not hold in off-nadir aerial images as there is often a big offset between them. In this paper, we propose an offset vector learning scheme, which turns the building footprint extraction problem in off-nadir images into an instance-level joint prediction problem of the building roof and its corresponding "roof to footprint" offset vector. Thus the footprint can be estimated by translating the predicted roof mask according to the predicted offset vector. We further propose a simple but effective feature-level offset augmentation module, which can significantly refine the offset vector prediction by introducing little extra cost. Moreover, a new dataset, Buildings in Off-Nadir Aerial Images (BONAI), is created and released in this paper. It contains 268,958 building instances across 3,300 aerial images with fully annotated instance-level roof, footprint, and corresponding offset vector for each building. Experiments on the BONAI dataset demonstrate that our method achieves the state-of-the-art, outperforming other competitors by 3.37 to 7.39 points in F1-score. The codes, datasets, and trained models are available at https://github.com/jwwangchn/BONAI.git.
利用摄影测量计算机视觉技术从航空影像中提取建筑物轮廓对于精确的城市地图绘制至关重要。现有方法主要假设建筑物的屋顶和轮廓完全重叠,但在倾斜航空影像中这一假设可能不成立,因为两者之间往往存在较大偏移。在本文中,我们提出了一种偏移向量学习方案,将倾斜影像中的建筑物轮廓提取问题转化为建筑物屋顶及其对应的“屋顶到轮廓”偏移向量的实例级联合预测问题。这样,通过根据预测的偏移向量平移预测的屋顶掩码,就可以估计出轮廓。我们还提出了一个简单而有效的特征级偏移增强模块,该模块只需引入很少的额外成本就能显著优化偏移向量预测。此外,本文创建并发布了一个新的数据集——倾斜航空影像中的建筑物(BONAI)。它包含3300张航空影像中的268,958个建筑物实例,每个建筑物都有完整标注的实例级屋顶、轮廓和相应的偏移向量。在BONAI数据集上的实验表明,我们的方法达到了当前最优水平,在F1分数上比其他竞争对手高出3.37至7.39分。代码、数据集和训练模型可在https://github.com/jwwangchn/BONAI.git获取。