Suppr超能文献

通过CT影像组学和形式方法对结直肠癌肝转移进行早期诊断:一项初步研究

Early Diagnosis of Liver Metastases from Colorectal Cancer through CT Radiomics and Formal Methods: A Pilot Study.

作者信息

Rocca Aldo, Brunese Maria Chiara, Santone Antonella, Avella Pasquale, Bianco Paolo, Scacchi Andrea, Scaglione Mariano, Bellifemine Fabio, Danzi Roberta, Varriano Giulia, Vallone Gianfranco, Calise Fulvio, Brunese Luca

机构信息

Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy.

HPB Surgery Unit, Pineta Grande Hospital, 81030 Castel Volturno, Italy.

出版信息

J Clin Med. 2021 Dec 22;11(1):31. doi: 10.3390/jcm11010031.

Abstract

BACKGROUND

Liver metastases are a leading cause of cancer-associated deaths in patients affected by colorectal cancer (CRC). The multidisciplinary strategy to treat CRC is more effective when the radiological diagnosis is accurate and early. Despite the evolving technologies in radiological accuracy, the radiological diagnosis of Colorectal Cancer Liver Metastases (CRCLM) is still a key point. The aim of our study was to define a new patient representation different by Artificial Intelligence models, using Formal Methods (FMs), to help clinicians to predict the presence of liver metastasis when still undetectable using the standard protocols.

METHODS

We retrospectively reviewed from 2013 to 2020 the CT scan of nine patients affected by CRC who would develop liver lesions within 4 months and 8 years. Seven patients developed liver metastases after primary staging before any liver surgery, and two patients were enrolled after R0 liver resection. Twenty-one patients were enrolled as the case control group (CCG). Regions of Interest (ROIs) were identified through manual segmentation on the medical images including only liver parenchyma and eventual benign lesions, avoiding major vessels and biliary ducts. Our predictive model was built based on formally verified radiomic features.

RESULTS

The precision of our methods is 100%, scheduling patients as positive only if they will be affected by CRCLM, showing a 93.3% overall accuracy. Recall was 77.8%.

CONCLUSION

FMs can provide an effective early detection of CRCLM before clinical diagnosis only through non-invasive radiomic features even in very heterogeneous and small clinical samples.

摘要

背景

肝转移是结直肠癌(CRC)患者癌症相关死亡的主要原因。当放射学诊断准确且早期时,多学科治疗CRC的策略更有效。尽管放射学准确性方面的技术不断发展,但结直肠癌肝转移(CRCLM)的放射学诊断仍然是关键。我们研究的目的是使用形式化方法(FMs)定义一种与人工智能模型不同的新患者表征,以帮助临床医生在使用标准方案仍无法检测到时预测肝转移的存在。

方法

我们回顾性分析了2013年至2020年9例CRC患者的CT扫描,这些患者在4个月至8年内会出现肝脏病变。7例患者在初次分期后、任何肝脏手术前发生肝转移,2例患者在R0肝切除术后入组。21例患者作为病例对照组(CCG)入组。通过在医学图像上手动分割确定感兴趣区域(ROIs),仅包括肝实质和最终的良性病变,避开主要血管和胆管。我们的预测模型基于经过形式验证的放射组学特征构建。

结果

我们方法的精度为100%,仅将那些会发生CRCLM的患者判定为阳性,总体准确率为93.3%。召回率为77.8%。

结论

即使在非常异质性的小临床样本中,形式化方法仅通过非侵入性放射组学特征就能在临床诊断前有效早期检测CRCLM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6015/8745238/6bae0db37bf6/jcm-11-00031-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验