Suppr超能文献

用于预测复杂性状和疾病的统计模型及计算工具。

Statistical models and computational tools for predicting complex traits and diseases.

作者信息

Chung Wonil

机构信息

Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Korea.

Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.

出版信息

Genomics Inform. 2021 Dec;19(4):e36. doi: 10.5808/gi.21053. Epub 2021 Dec 31.

Abstract

Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.

摘要

从基因变异预测个体特征和疾病对于实现个性化医疗的前景至关重要。全基因组关联研究(GWAS)中的基因变异,包括远低于GWAS显著性水平的变异,可以汇总成针对广泛复杂性状和疾病的高度显著预测。大样本公共生物样本库的出现,使得基于全基因组的基因变异进行高度准确的多基因预测成为可能。为了更准确地计算多基因风险评分(PRS),人们引入并开发了各种统计方法和多样的计算工具。然而,许多研究人员在没有透彻理解基础模型以及如何为最佳性能指定参数的情况下就使用PRS工具。研究用于PRS估计的计算工具中实现的统计模型以及要指定的参数公式是很有好处的。在此,我们综述了近期用于PRS计算的各种统计方法和计算工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cfe/8752975/f49ba4bfa90a/gi-21053f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验