Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
Microb Cell Fact. 2022 Jan 10;21(1):9. doi: 10.1186/s12934-021-01734-9.
The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.
真菌聚酮类化合物比卡维因和博斯替菌素的生物合成途径分别来自于串珠镰刀菌和茄病镰刀菌,在酿酒酵母中进行了重建和异源表达,同时还表达了来自不同来源的七种不同的磷酸泛酰巯基乙胺转移酶(PPTase),这些来源包括细菌、酵母和真菌。为了评估聚酮合酶(PKS)ACP 结构域与 PPTase 之间相互作用的效率,分别单独进行了共表达,并在 48 小时的生长后确定了目标聚酮的产生情况。在与两种生物合成途径共表达时,来自串珠镰刀菌的 PPTase(FvPPT1)在产生比卡维因和博斯替菌素方面最为有效,分别达到 1.4mg/L 和 5.9mg/L。此外,除了一种 PKS-PPTase 组合外,其余的 PPTase 显示出与两种 PKS 相互作用的能力。结果表明,通过利用更优化的 PPTase 伴侣,而不是常用的来自于构巢曲霉、短芽孢杆菌和枯草芽孢杆菌的 NpgA、Gsp 和 Sfp,就可以简单地提高目标聚酮的产量。