Center for Industrial Ecology, School of the Environment, Yale University, 195 Prospect St, New Haven, Connecticut, 06511, United States.
Nat Commun. 2022 Jan 10;13(1):150. doi: 10.1038/s41467-021-27829-w.
Materials scientists employ metals and alloys that involve most of the periodic table. Nonetheless, materials scientists rarely take material criticality and reuse potential into account. In this work, we expand upon lists of "critical materials" generated by national and regional governments by showing that many materials are employed predominantly as alloying elements, which can be a deterrent to recovery and reuse at end of product life and, likely as a consequence, have low functional end-of-life recycling rates, among other problematic characteristics. We thereby single out six metals for enhanced concern: dysprosium, samarium, vanadium, niobium, tellurium, and gallium. From that perspective, the use of critical metals in low concentrations in alloys unlikely to be routinely recycled should be avoided if possible. If not, provision should be made for better identification and more efficient recycling so that materials designated as critical can have increased potential for more than a single functional use.
材料科学家使用涉及元素周期表大部分元素的金属和合金。然而,材料科学家很少考虑材料的关键性和再利用潜力。在这项工作中,我们通过展示许多材料主要用作合金元素,这可能会阻碍产品生命周期结束时的回收和再利用,并可能因此导致功能生命周期结束时的回收利用率低,以及其他有问题的特性,扩展了国家和地区政府制定的“关键材料”清单。因此,我们特别关注六种金属:镝、钐、钒、铌、碲和镓。从这个角度来看,如果可能的话,应该避免在不太可能常规回收的低浓度合金中使用关键金属。如果不能,应规定更好的识别和更有效的回收,以便将指定为关键的材料有更多的潜在用途,而不仅仅是单一的功能用途。