Integrative Computational Pharmacology and Data Mining, INSERM UMR 1141, NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France.
Sorbonne Université, INSERM 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Virologie, F75013 Paris, France.
Int J Mol Sci. 2021 Feb 8;22(4):1695. doi: 10.3390/ijms22041695.
SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually in part due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor, several in silico methods and numerous experimental data reported recently to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both the UK and South African strains) should be favorable for the interaction with ACE2, while the K417N and E484K substitutions (South African strain) would seem neutral or even unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the K417N and E484K Spike replacements with regard to ACE2 binding. Our finding suggests that the UK strain should have higher affinity toward ACE2 and therefore likely increased transmissibility and possibly pathogenicity. If indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions located outside the direct Spike-ACE2 interface but not so much to the K417N and E484K replacements. Yet, it should be noted that amino acid changes at Spike position 484 can lead to viral escape from neutralizing antibodies. Further, these amino acid substitutions do not seem to induce major structural changes in this region of the Spike protein. This structure-function study allows us to rationalize some observations made for the UK strain but raises questions for the South African strain.
SARS-CoV-2 利用血管紧张素转换酶 2(ACE2)作为受体入侵细胞。据报道,英国和南非株可能具有更高的传播能力,部分原因最终可能是 SARS-CoV-2 刺突蛋白上的氨基酸取代。致病性似乎有所改变,但仍在调查中。在这里,我们使用与 ACE2 受体部分结合的 Spike RBD 结构域的实验结构、几种计算机模拟方法和最近报道的大量实验数据来分析三个氨基酸取代(Spike K417N、E484K、N501Y)对 ACE2 结合的可能影响。我们发现,该界面区域(存在于英国和南非株中)的 N501Y 取代应该有利于与 ACE2 的相互作用,而 K417N 和 E484K 取代(南非株)似乎是中性的甚至不利的。目前尚不清楚南非株中的 N501Y 取代是否会抵消 Spike 对 ACE2 结合的 K417N 和 E484K 取代。我们的发现表明,英国株对 ACE2 的亲和力应该更高,因此可能具有更高的传染性和致病性。如果南非株确实具有高传播水平,这可能是由于 N501Y 取代以及位于 Spike-ACE2 直接界面之外的区域的取代,但不是由于 K417N 和 E484K 取代。然而,应该注意的是,刺突位置 484 的氨基酸变化可以导致病毒逃避中和抗体。此外,这些氨基酸取代似乎不会导致 Spike 蛋白该区域的主要结构变化。这项结构功能研究使我们能够合理化对英国株的一些观察结果,但对南非株提出了疑问。