Suppr超能文献

用于生物医学应用的基于 NaYF 的上转换纳米粒子的化学稳定性的关键方面。

Critical Aspects on the Chemical Stability of NaYF-Based Upconverting Nanoparticles for Biomedical Applications.

机构信息

Gerencia Química Comisión Nacional de Energía Atómica (CNEA) - INN - CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Argentina.

出版信息

ACS Appl Bio Mater. 2021 Feb 15;4(2):1191-1210. doi: 10.1021/acsabm.0c01562. Epub 2021 Feb 3.

Abstract

This review summarizes essential information about the chemical stability of NaYF-based upconverting nanoparticles (UCNPs) in aqueous solutions, a crucial aspect for achieving high quality standards for biomedical materials. We present an in-depth analysis of the major experimental evidence and proposed mechanisms that provide a theoretical framework for understanding UCNPs degradation, destabilization, and dissolution under different conditions such as media composition, temperature, particle size, and the synthetic methods employed. The ion release and disintegration of the UCNP crystal structure may trigger cytotoxic events within living organisms and impact on their optical properties, precluding their safe use in biological environments. Also, we present a summary of the characterization techniques' toolbox employed for monitoring and detecting these degradation processes. Closing the existing "information gap" that links UCNP physicochemical properties, such as solubility and chemical stability, with the biological response of living organisms or tissues, is vital for using these nanoparticles as biological tracer probes, theranostic vehicles, or for clinical purposes. The understanding of chemical phenomena at the nanoparticle solid-liquid interface is mandatory to complete the molecular picture of nanosized objects, orienting in a rational manner the efforts of research and development in the early stages of these functional materials.

摘要

本文综述了基于 NaYF 的上转换纳米粒子(UCNPs)在水溶液中化学稳定性的重要信息,这是实现生物医学材料高质量标准的关键方面。我们对主要的实验证据和提出的机制进行了深入分析,为理解 UCNPs 在不同条件下的降解、失稳和溶解提供了理论框架,如介质组成、温度、颗粒大小和所采用的合成方法。UCNP 晶体结构的离子释放和崩解可能会在活体内引发细胞毒性事件,并影响其光学性质,从而妨碍它们在生物环境中的安全使用。此外,我们还总结了用于监测和检测这些降解过程的特征技术工具箱。为了将 UCNP 的物理化学性质(如溶解度和化学稳定性)与生物体或组织的生物反应联系起来,填补现有“信息空白”至关重要,这对于将这些纳米粒子用作生物示踪探针、治疗诊断载体或用于临床目的至关重要。了解纳米颗粒固液界面的化学现象对于完成纳米尺寸物体的分子图像是必要的,这将以合理的方式指导这些功能材料早期研发工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验