Suppr超能文献

动力学控制的不对称多孔和中空碳纳米粒子的超组装作为光敏感智能纳米载体。

Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles.

机构信息

Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.

State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.

出版信息

J Am Chem Soc. 2022 Feb 2;144(4):1634-1646. doi: 10.1021/jacs.1c10391. Epub 2022 Jan 11.

Abstract

The rational design and controllable synthesis of hollow nanoparticles with both a mesoporous shell and an asymmetric architecture are crucially desired yet still significant challenges. In this work, a kinetics-controlled interfacial super-assembly strategy is developed, which is capable of preparing asymmetric porous and hollow carbon (APHC) nanoparticles through the precise regulation of polymerization and assembly rates of two kinds of precursors. In this method, Janus resin and silica hybrid (RSH) nanoparticles are first fabricated through the kinetics-controlled competitive nucleation and assembly of two precursors. Specifically, silica nanoparticles are initially formed, and the resin nanoparticles are subsequently formed on one side of the silica nanoparticles, followed by the co-assembly of silica and resin on the other side of the silica nanoparticles. The APHC nanoparticles are finally obtained via high-temperature carbonization of RSH nanoparticles and elimination of silica. The erratic asymmetrical, hierarchical porous and hollow structure and excellent photothermal performance under 980 nm near-infrared (NIR) light endow the APHC nanoparticles with the ability to serve as fuel-free nanomotors with NIR-light-driven propulsion. Upon illumination by NIR light, the photothermal effect of the APHC shell causes both self-thermophoresis and jet driving forces, which propel the APHC nanomotor. Furthermore, with the assistance of phase change materials, such APHC nanoparticles can be employed as smart vehicles that can achieve on-demand release of drugs with a 980 nm NIR laser. As a proof of concept, we apply this APHC-based therapeutic system in cancer treatment, which shows improved anticancer performance due to the synergy of photothermal therapy and chemotherapy. In brief, this kinetics-controlled approach may put forward new insight into the design and synthesis of functional materials with unique structures, properties, and applications by adjusting the assembly rates of multiple precursors in a reaction system.

摘要

具有介孔壳和不对称结构的中空纳米粒子的合理设计和可控合成是至关重要的,但仍然是一个重大挑战。在这项工作中,开发了一种动力学控制的界面超组装策略,通过精确调节两种前体的聚合和组装速率,能够制备不对称多孔和中空碳(APHC)纳米粒子。在该方法中,首先通过两种前体的动力学控制竞争成核和组装制备Janus 树脂和二氧化硅杂化(RSH)纳米粒子。具体来说,首先形成二氧化硅纳米粒子,然后在二氧化硅纳米粒子的一侧形成树脂纳米粒子,接着在二氧化硅纳米粒子的另一侧进行二氧化硅和树脂的共组装。最后,通过 RSH 纳米粒子的高温碳化和二氧化硅的消除得到 APHC 纳米粒子。不规则的不对称、分级多孔和中空结构以及在 980nm 近红外(NIR)光下的优异光热性能赋予了 APHC 纳米粒子作为无燃料纳米马达的能力,可在 NIR 光驱动下推进。在 NIR 光照射下,APHC 壳的光热效应导致自热泳和射流驱动力,从而推动 APHC 纳米马达。此外,借助相变材料,这种 APHC 纳米粒子可用作智能车辆,可实现通过 980nm NIR 激光按需释放药物。作为概念验证,我们将这种基于 APHC 的治疗系统应用于癌症治疗中,由于光热疗法和化学疗法的协同作用,显示出了改善的抗癌性能。总之,通过调整反应体系中多种前体的组装速率,这种动力学控制方法可能为具有独特结构、性能和应用的功能材料的设计和合成提供新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验