Suppr超能文献

基于粗糙伴随不一致性和最优传输的领域自适应用于识别自闭症患者。

Domain adaptation based on rough adjoint inconsistency and optimal transport for identifying autistic patients.

机构信息

School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China.

School of Artificial Intelligence, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Intelligent Technology and Educational Application, Ministry of Education, Beijing, 100875, China.

出版信息

Comput Methods Programs Biomed. 2022 Mar;215:106615. doi: 10.1016/j.cmpb.2021.106615. Epub 2022 Jan 2.

Abstract

BACKGROUND AND OBJECTIVE

Computer aided diagnosis technology has been widely used to diagnose autism spectrum disorder (ASD) from neural images. The performance of the model usually depends largely on a sufficient number of training samples that reflect the real sample distribution. Due to the lack of labelled neural images data, multisite data are often pooled together to expand the sample size. However, the heterogeneity among sites will inevitably lead to a decline in the generalization of models. To solve this problem, we propose a multisource unsupervised domain adaptation method using rough adjoint inconsistency and optimal transport.

METHODS

First, we define the concept of rough adjoint inconsistency and propose a double quantization method based on rough adjoint inconsistency and Dempster-Shafer (D-S) evidence theory to estimate the weight coefficient of each source domain to accurately describe the importance of each source domain to the target domain. Second, using optimal transport theory, we weaken the data distribution differences between domains and solve the problem of class imbalance by adjusting the sampling weights among classes.

RESULTS

The ASD recognition accuracy of the proposed method is improved on all eight tasks, which are 70.67%, 64.86%, 62.50%, 70.80%, 73.08%, 71.19%, 75.41% and 75.76%, respectively. Our proposed model achieves superior performance compared to traditional machine learning methods and other recently proposed deep learning model.

CONCLUSIONS

Our method demonstrates that the fusion of rough adjoint inconsistency and optimal transport can be a powerful tool for identifying ASD and quantifying the correlations between domains.

摘要

背景与目的

计算机辅助诊断技术已广泛应用于从神经影像中诊断自闭症谱系障碍(ASD)。模型的性能通常在很大程度上取决于反映真实样本分布的足够数量的训练样本。由于缺乏标记的神经影像数据,通常会汇集多站点数据以扩大样本量。然而,站点之间的异质性不可避免地会导致模型的泛化能力下降。为了解决这个问题,我们提出了一种基于粗糙对偶不一致性和最优传输的多源无监督领域自适应方法。

方法

首先,我们定义了粗糙对偶不一致性的概念,并提出了一种基于粗糙对偶不一致性和 Dempster-Shafer(D-S)证据理论的双量化方法,以估计每个源域的权重系数,从而准确描述每个源域对目标域的重要性。其次,利用最优传输理论,我们削弱了域间的数据分布差异,并通过调整类间的采样权重来解决类不平衡问题。

结果

所提出的方法在所有八个任务中的 ASD 识别准确率都有所提高,分别为 70.67%、64.86%、62.50%、70.80%、73.08%、71.19%、75.41%和 75.76%。与传统机器学习方法和其他最近提出的深度学习模型相比,我们提出的模型具有优越的性能。

结论

我们的方法表明,粗糙对偶不一致性和最优传输的融合可以成为识别 ASD 和量化域间相关性的有力工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验