Suppr超能文献

联合多站点域自适应和多模态特征选择用于精神障碍的诊断。

Joint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders.

机构信息

Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.

出版信息

Neuroimage Clin. 2024;43:103663. doi: 10.1016/j.nicl.2024.103663. Epub 2024 Aug 28.

Abstract

Identifying biomarkers for computer-aided diagnosis (CAD) is crucial for early intervention of psychiatric disorders. Multi-site data have been utilized to increase the sample size and improve statistical power, while multi-modality classification offers significant advantages over traditional single-modality based approaches for diagnosing psychiatric disorders. However, inter-site heterogeneity and intra-modality heterogeneity present challenges to multi-site and multi-modality based classification. In this paper, brain functional and structural networks (BFNs/BSNs) from multiple sites were constructed to establish a joint multi-site multi-modality framework for psychiatric diagnosis. To do this we developed a hypergraph based multi-source domain adaptation (HMSDA) which allowed us to transform source domain subjects into a target domain. A local ordinal structure based multi-task feature selection (LOSMFS) approach was developed by integrating the transformed functional and structural connections (FCs/SCs). The effectiveness of our method was validated by evaluating diagnosis of both schizophrenia (SZ) and autism spectrum disorder (ASD). The proposed method obtained accuracies of 92.2 %±2.22 % and 84.8 %±2.68 % for the diagnosis of SZ and ASD, respectively. We also compared with 6 DA, 10 multi-modality feature selection, and 8 multi-site and multi-modality methods. Results showed the proposed HMSDA+LOSMFS effectively integrated multi-site and multi-modality data to enhance psychiatric diagnosis and identify disorder-specific diagnostic brain connections.

摘要

识别计算机辅助诊断 (CAD) 的生物标志物对于精神障碍的早期干预至关重要。多站点数据已被用于增加样本量并提高统计能力,而多模态分类相对于传统的基于单模态的精神障碍诊断方法具有显著优势。然而,站点间异质性和模态内异质性对基于多站点和多模态的分类提出了挑战。在本文中,构建了来自多个站点的脑功能和结构网络 (BFNs/BSNs),以建立用于精神疾病诊断的联合多站点多模态框架。为此,我们开发了一种基于超图的多源域自适应 (HMSDA),允许我们将源域主体转换为目标域。通过整合转换后的功能和结构连接 (FCs/SCs),开发了基于局部有序结构的多任务特征选择 (LOSMFS) 方法。通过评估精神分裂症 (SZ) 和自闭症谱系障碍 (ASD) 的诊断,验证了我们方法的有效性。所提出的方法分别获得了 SZ 和 ASD 诊断的 92.2%±2.22%和 84.8%±2.68%的准确率。我们还与 6 种 DA、10 种多模态特征选择和 8 种多站点和多模态方法进行了比较。结果表明,所提出的 HMSDA+LOSMFS 有效地整合了多站点和多模态数据,以增强精神疾病诊断并识别特定于疾病的诊断大脑连接。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验