Suppr超能文献

利用黄素结构域研究蓝光的光物理性质。

Photophysics of the Blue Light Using Flavin Domain.

机构信息

Department of Biophysics, Medical School, University of Pécs, Szigeti str 12, 7624 Pécs, Hungary.

Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794-3400, United States.

出版信息

Acc Chem Res. 2022 Feb 1;55(3):402-414. doi: 10.1021/acs.accounts.1c00659. Epub 2022 Jan 12.

Abstract

Light activated proteins are at the heart of photobiology and optogenetics, so there is wide interest in understanding the mechanisms coupling optical excitation to protein function. In addition, such light activated proteins provide unique insights into the real-time dynamics of protein function. Using pump-probe spectroscopy, the function of a photoactive protein can be initiated by a sub-100 fs pulse of light, allowing subsequent protein dynamics to be probed from femtoseconds to milliseconds and beyond. Among the most interesting photoactive proteins are the blue light using flavin (BLUF) domain proteins, which regulate the response to light of a wide range of bacterial and some euglenoid processes. The photosensing mechanism of BLUF domains has long been a subject of debate. In contrast to other photoactive proteins, the electronic and nuclear structure of the chromophore (flavin) is the same in dark- and light-adapted states. Thus, the driving force for photoactivity is unclear.To address this question requires real-time observation of both chromophore excited state processes and their effect on the structure and dynamics of the surrounding protein matrix. In this Account we describe how time-resolved infrared (IR) experiments, coupled with chemical biology, provide important new insights into the signaling mechanism of BLUF domains. IR measurements are sensitive to changes in both chromophore electronic structure and protein hydrogen bonding interactions. These contributions are resolved by isotope labeling of the chromophore and protein separately. Further, a degree of control over BLUF photochemistry is achieved through mutagenesis, while unnatural amino acid substitution allows us to both fine-tune the photochemistry and time resolve protein dynamics with spatial resolution.Ultrafast studies of BLUF domains reveal non-single-exponential relaxation of the flavin excited state. That relaxation leads within one nanosecond to the original flavin ground state bound in a modified hydrogen-bonding network, as seen in transient and steady-state IR spectroscopy. The change in H-bond configuration arises from formation of an unusual enol (imine) form of a critical glutamine residue. The dynamics observed, complemented by quantum mechanical calculations, suggest a unique sequential electron then double proton transfer reaction as the driving force, followed by rapid reorganization in the binding site and charge recombination. Importantly, studies of several BLUF domains reveal an unexpected diversity in their dynamics, although the underlying structure appears highly conserved. It is suggested that this diversity reflects structural dynamics in the ground state at standard temperature, leading to a distribution of structures and photochemical outcomes. Time resolved IR measurements were extended to the millisecond regime for one BLUF domain, revealing signaling state formation on the microsecond time scale. The mechanism involves reorganization of a β-sheet connected to the chromophore binding pocket via a tryptophan residue. The potential of site-specific labeling amino acids with IR labels as a tool for probing protein structural dynamics was demonstrated.In summary, time-resolved IR studies of BLUF domains (along with related studies at visible wavelengths and quantum and molecular dynamics calculations) have resolved the photoactivation mechanism and real-time dynamics of signaling state formation. These measurements provide new insights into protein structural dynamics and will be important in optimizing the potential of BLUF domains in optobiology.

摘要

光激活蛋白是光生物学和光遗传学的核心,因此人们广泛关注理解将光激发与蛋白质功能偶联的机制。此外,这类光激活蛋白为实时了解蛋白质功能动力学提供了独特的视角。利用泵浦探测光谱学,可以通过 100fs 以下的光脉冲来启动光活性蛋白的功能,从而可以从飞秒到毫秒甚至更长时间探测后续的蛋白质动力学。最有趣的光激活蛋白之一是蓝光利用黄素(BLUF)结构域蛋白,它调节了许多细菌和某些眼虫类过程对光的反应。BLUF 结构域的光传感机制一直是一个争论的话题。与其他光激活蛋白不同,生色团(黄素)的电子和核结构在暗适应和光适应状态下是相同的。因此,光活性的驱动力尚不清楚。要解决这个问题,需要实时观察生色团激发态过程及其对周围蛋白质基质结构和动力学的影响。在本综述中,我们描述了如何通过时间分辨红外(IR)实验结合化学生物学,为 BLUF 结构域的信号转导机制提供了重要的新见解。IR 测量对生色团电子结构和蛋白质氢键相互作用的变化都很敏感。通过分别对生色团和蛋白质进行同位素标记可以解析这些贡献。此外,通过突变可以在一定程度上控制 BLUF 光化学,而非天然氨基酸取代允许我们在具有空间分辨率的情况下微调光化学和时间分辨蛋白质动力学。BLUF 结构域的超快研究揭示了黄素激发态的非单指数弛豫。这种弛豫在不到 1 纳秒内导致黄素基态的重新形成,其结合在一个修饰的氢键网络中,这可以在瞬态和稳态红外光谱中看到。氢键构型的变化源于一个关键谷氨酰胺残基形成了一种不寻常的烯醇(亚胺)形式。观察到的动力学与量子力学计算相结合,表明这是一种独特的顺序电子然后双质子转移反应作为驱动力,随后在结合位点和电荷复合中快速重组。重要的是,对几个 BLUF 结构域的研究揭示了它们动力学的出乎意料的多样性,尽管其基础结构似乎高度保守。有人认为,这种多样性反映了标准温度下基态的结构动力学,导致了结构和光化学结果的分布。对一个 BLUF 结构域的毫秒级时间分辨 IR 测量扩展到毫秒级,揭示了微秒时间尺度上的信号状态形成机制。该机制涉及到通过色氨酸残基连接到生色团结合口袋的β-折叠的重排。用 IR 标记物对特定位置标记氨基酸作为探测蛋白质结构动力学的工具的潜力得到了证明。总之,BLUF 结构域的时间分辨 IR 研究(以及在可见光波长和量子和分子动力学计算方面的相关研究)已经解决了光激活机制和信号状态形成的实时动力学。这些测量为蛋白质结构动力学提供了新的见解,并将在优化 BLUF 结构域在光生物学中的潜力方面发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验