Zhuang Bo, Ramodiharilafy Rivo, Aleksandrov Alexey, Liebl Ursula, Vos Marten H
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
Chem Sci. 2024 Nov 25;16(1):338-344. doi: 10.1039/d4sc06857b. eCollection 2024 Dec 18.
Photoreduction of oxidized flavins has a functional role in photocatalytic and photoreceptor flavoproteins. In flavoproteins without light-dependent physiological functions, ultrafast, reversible flavin photoreduction is supposedly photoprotective by nature, and holds potential for nonnatural photocatalytic applications. In this work, we combine protein mutagenesis, ultrafast spectroscopy, molecular dynamics simulations and quantum mechanics calculations to investigate the nonfunctional flavin photoreduction in a flavoenzyme, lysine-specific demethylase 1 (LSD1) which is pivotal in DNA transcription. LSD1 harbors an oxidized flavin adenine dinucleotide (FAD) cofactor and multiple electron-donating residues in the active site. Upon photoexcitation, the FAD cofactor is photoreduced in <200 fs by electron transfer (ET) from nearby residue(s), and the charge pairs recombine in 2 ps. Site-directed mutagenesis pinpoints a specific tryptophan residue, W751, as the primary electron donor, whereas a tyrosine residue, Y761, despite being located closer to the flavin ring, does not effectively contribute to the process. Based on a hybrid quantum-classical computational approach, we characterize the W751-FAD and Y761-FAD charge-transfer states (CT and CT, respectively), as well as the FAD locally excited state (LE), and demonstrate that the coupling between LE and CT is larger than those involving CT by an order of magnitude, rationalizing the experimental observations. More generally, this work highlights the role of the intrinsic protein environment and details of donor-acceptor molecular configurations on the dynamics of short-range ET involving a flavin cofactor and amino acid residue(s).
氧化黄素的光还原在光催化和光感受器黄素蛋白中具有功能作用。在没有光依赖生理功能的黄素蛋白中,超快、可逆的黄素光还原本质上被认为具有光保护作用,并具有非天然光催化应用的潜力。在这项工作中,我们结合蛋白质诱变、超快光谱、分子动力学模拟和量子力学计算,研究黄素酶赖氨酸特异性去甲基化酶1(LSD1,在DNA转录中起关键作用)中的非功能性黄素光还原。LSD1在活性位点含有一个氧化的黄素腺嘌呤二核苷酸(FAD)辅因子和多个供电子残基。光激发后,FAD辅因子通过来自附近残基的电子转移(ET)在<200飞秒内被光还原,电荷对在2皮秒内重新结合。定点诱变确定一个特定的色氨酸残基W751为主要电子供体,而一个酪氨酸残基Y761尽管离黄素环更近,但对该过程没有有效贡献。基于一种混合量子-经典计算方法,我们表征了W751-FAD和Y761-FAD电荷转移态(分别为CT和CT)以及FAD局部激发态(LE),并证明LE和CT之间的耦合比涉及CT的耦合大一个数量级,从而合理解释了实验观察结果。更一般地说,这项工作突出了内在蛋白质环境的作用以及供体-受体分子构型细节对涉及黄素辅因子和氨基酸残基的短程电子转移动力学的影响。