School of Nursing, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
Superintendent Office, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
BMC Bioinformatics. 2022 Jan 11;22(Suppl 5):615. doi: 10.1186/s12859-022-04558-5.
Researchers have attempted to apply deep learning methods of artificial intelligence for rapidly and accurately detecting acute lymphoblastic leukemia (ALL) in microscopic images.
A Resnet101-9 ensemble model was developed for classifying ALL in microscopic images. The proposed Resnet101-9 ensemble model combined the use of the nine trained Resnet-101 models with a majority voting strategy. Each trained Resnet-101 model integrated the well-known pre-trained Resnet-101 model and its algorithm hyperparameters by using transfer learning method to classify ALL in microscopic images. The best combination of algorithm hyperparameters for the pre-trained Resnet-101 model was determined by Taguchi experimental method. The microscopic images used for training of the pre-trained Resnet-101 model and for performance tests of the trained Resnet-101 model were obtained from the C-NMC dataset. In experimental tests of performance, the Resnet101-9 ensemble model achieved an accuracy of 85.11% and an F-score of 88.94 in classifying ALL in microscopic images. The accuracy of the Resnet101-9 ensemble model was superior to that of the nine trained Resnet-101 individual models. All other performance measures (i.e., precision, recall, and specificity) for the Resnet101-9 ensemble model exceeded those for the nine trained Resnet-101 individual models.
Compared to the nine trained Resnet-101 individual models, the Resnet101-9 ensemble model had superior accuracy in classifying ALL in microscopic images obtained from the C-NMC dataset.
研究人员尝试应用人工智能深度学习方法,快速准确地检测显微镜下的急性淋巴细胞白血病(ALL)。
开发了用于分类显微镜下 ALL 的 Resnet101-9 集成模型。提出的 Resnet101-9 集成模型结合了使用九个训练过的 Resnet-101 模型和多数投票策略。每个训练过的 Resnet-101 模型通过使用迁移学习方法来集成著名的预训练 Resnet-101 模型及其算法超参数,以分类显微镜下的 ALL。使用田口实验方法确定了预训练 Resnet-101 模型的最佳算法超参数组合。预训练 Resnet-101 模型的训练和训练过的 Resnet-101 模型的性能测试使用的显微镜图像来自 C-NMC 数据集。在性能实验测试中,Resnet101-9 集成模型在分类显微镜下 ALL 方面的准确率为 85.11%,F1 评分为 88.94。Resnet101-9 集成模型的准确率优于九个训练过的 Resnet-101 单个模型。Resnet101-9 集成模型的所有其他性能指标(即准确率、召回率和特异性)均优于九个训练过的 Resnet-101 单个模型。
与九个训练过的 Resnet-101 单个模型相比,Resnet101-9 集成模型在分类来自 C-NMC 数据集的显微镜下 ALL 方面具有更高的准确率。