Suppr超能文献

基于 Resnet 集成模型和 Taguchi 方法对急性淋巴细胞白血病的显微图像进行分类。

Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method.

机构信息

School of Nursing, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.

Superintendent Office, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.

出版信息

BMC Bioinformatics. 2022 Jan 11;22(Suppl 5):615. doi: 10.1186/s12859-022-04558-5.

Abstract

BACKGROUND

Researchers have attempted to apply deep learning methods of artificial intelligence for rapidly and accurately detecting acute lymphoblastic leukemia (ALL) in microscopic images.

RESULTS

A Resnet101-9 ensemble model was developed for classifying ALL in microscopic images. The proposed Resnet101-9 ensemble model combined the use of the nine trained Resnet-101 models with a majority voting strategy. Each trained Resnet-101 model integrated the well-known pre-trained Resnet-101 model and its algorithm hyperparameters by using transfer learning method to classify ALL in microscopic images. The best combination of algorithm hyperparameters for the pre-trained Resnet-101 model was determined by Taguchi experimental method. The microscopic images used for training of the pre-trained Resnet-101 model and for performance tests of the trained Resnet-101 model were obtained from the C-NMC dataset. In experimental tests of performance, the Resnet101-9 ensemble model achieved an accuracy of 85.11% and an F-score of 88.94 in classifying ALL in microscopic images. The accuracy of the Resnet101-9 ensemble model was superior to that of the nine trained Resnet-101 individual models. All other performance measures (i.e., precision, recall, and specificity) for the Resnet101-9 ensemble model exceeded those for the nine trained Resnet-101 individual models.

CONCLUSION

Compared to the nine trained Resnet-101 individual models, the Resnet101-9 ensemble model had superior accuracy in classifying ALL in microscopic images obtained from the C-NMC dataset.

摘要

背景

研究人员尝试应用人工智能深度学习方法,快速准确地检测显微镜下的急性淋巴细胞白血病(ALL)。

结果

开发了用于分类显微镜下 ALL 的 Resnet101-9 集成模型。提出的 Resnet101-9 集成模型结合了使用九个训练过的 Resnet-101 模型和多数投票策略。每个训练过的 Resnet-101 模型通过使用迁移学习方法来集成著名的预训练 Resnet-101 模型及其算法超参数,以分类显微镜下的 ALL。使用田口实验方法确定了预训练 Resnet-101 模型的最佳算法超参数组合。预训练 Resnet-101 模型的训练和训练过的 Resnet-101 模型的性能测试使用的显微镜图像来自 C-NMC 数据集。在性能实验测试中,Resnet101-9 集成模型在分类显微镜下 ALL 方面的准确率为 85.11%,F1 评分为 88.94。Resnet101-9 集成模型的准确率优于九个训练过的 Resnet-101 单个模型。Resnet101-9 集成模型的所有其他性能指标(即准确率、召回率和特异性)均优于九个训练过的 Resnet-101 单个模型。

结论

与九个训练过的 Resnet-101 单个模型相比,Resnet101-9 集成模型在分类来自 C-NMC 数据集的显微镜下 ALL 方面具有更高的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f1f/8753813/fe0573aec151/12859_2022_4558_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验