Suppr超能文献

ALNett:一种用于急性淋巴细胞白血病分类的聚类层深度卷积神经网络。

ALNett: A cluster layer deep convolutional neural network for acute lymphoblastic leukemia classification.

机构信息

Leather Process Technology Division, CSIR-Central Leather Research Institute, Chennai, India.

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.

出版信息

Comput Biol Med. 2022 Sep;148:105894. doi: 10.1016/j.compbiomed.2022.105894. Epub 2022 Jul 21.

Abstract

Acute Lymphoblastic Leukemia (ALL) is cancer in which bone marrow overproduces undeveloped lymphocytes. Over 6500 cases of ALL are diagnosed every year in the United States in both adults and children, accounting for around 25% of pediatric cancers, and the trend continues to rise. With the advancements of AI and big data analytics, early diagnosis of ALL can be used to aid the clinical decisions of physicians and radiologists. This research proposes a deep neural network-based (ALNett) model that employs depth-wise convolution with different dilation rates to classify microscopic white blood cell images. Specifically, the cluster layers encompass convolution and max-pooling followed by a normalization process that provides enriched structural and contextual details to extract robust local and global features from the microscopic images for the accurate prediction of ALL. The performance of the model was compared with various pre-trained models, including VGG16, ResNet-50, GoogleNet, and AlexNet, based on precision, recall, accuracy, F1 score, loss accuracy, and receiver operating characteristic (ROC) curves. Experimental results showed that the proposed ALNett model yielded the highest classification accuracy of 91.13% and an F1 score of 0.96 with less computational complexity. ALNett demonstrated promising ALL categorization and outperformed the other pre-trained models.

摘要

急性淋巴细胞白血病 (ALL) 是一种骨髓过度生成未成熟淋巴细胞的癌症。在美国,每年有超过 6500 例 ALL 被诊断出,包括成人和儿童,占儿科癌症的约 25%,且这一趋势还在持续上升。随着人工智能和大数据分析的进步,ALL 的早期诊断可以用于辅助医生和放射科医生的临床决策。本研究提出了一种基于深度神经网络的 (ALNett) 模型,该模型使用具有不同扩张率的深度卷积来对微观白细胞图像进行分类。具体来说,聚类层包含卷积和最大池化,随后是归一化过程,该过程提供了丰富的结构和上下文细节,可从微观图像中提取出稳健的局部和全局特征,从而准确预测 ALL。该模型的性能与包括 VGG16、ResNet-50、GoogleNet 和 AlexNet 在内的各种预训练模型进行了比较,评估指标包括精度、召回率、准确性、F1 得分、损失准确性和接收者操作特征 (ROC) 曲线。实验结果表明,所提出的 ALNett 模型的分类准确率最高,达到 91.13%,F1 得分达到 0.96,且计算复杂度较低。ALNett 表现出了有前景的 ALL 分类能力,优于其他预训练模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验