Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
School of Biological Sciences, Seoul National University, Seoul, Korea.
Cardiovasc Res. 2022 Sep 20;118(12):2638-2651. doi: 10.1093/cvr/cvac003.
Well-controlled mitochondrial homeostasis, including a mitochondria-specific form of autophagy (hereafter referred to as mitophagy), is essential for maintaining cardiac function. The molecular mechanism mediating mitophagy during pressure overload (PO) is poorly understood. We have shown previously that mitophagy in the heart is mediated primarily by Atg5/Atg7-independent mechanisms, including Unc-51-like kinase 1 (Ulk1)-dependent alternative mitophagy, during myocardial ischaemia. Here, we investigated the role of alternative mitophagy in the heart during PO-induced hypertrophy.
Mitophagy was observed in the heart in response to transverse aortic constriction (TAC), peaking at 3-5 days. Whereas mitophagy is transiently up-regulated by TAC through an Atg7-dependent mechanism in the heart, peaking at 1 day, it is also activated more strongly and with a delayed time course through an Ulk1-dependent mechanism. TAC induced more severe cardiac dysfunction, hypertrophy, and fibrosis in ulk1 cardiac-specific knock-out (cKO) mice than in wild-type mice. Delayed activation of mitophagy was characterized by the co-localization of Rab9 dots and mitochondria and phosphorylation of Rab9 at Ser179, major features of alternative mitophagy. Furthermore, TAC-induced decreases in the mitochondrial aspect ratio were abolished and the irregularity of mitochondrial cristae was exacerbated, suggesting that mitochondrial quality control mechanisms are impaired in ulk1 cKO mice in response to TAC. TAT-Beclin 1 activates mitophagy even in Ulk1-deficient conditions. TAT-Beclin 1 treatment rescued mitochondrial dysfunction and cardiac dysfunction in ulk1 cKO mice during PO.
Ulk1-mediated alternative mitophagy is a major mechanism mediating mitophagy in response to PO and plays an important role in mediating mitochondrial quality control mechanisms and protecting the heart against cardiac dysfunction.
良好的线粒体动态平衡,包括线粒体特有的自噬形式(以下简称线粒体自噬),对于维持心脏功能至关重要。压力超负荷(PO)期间介导线粒体自噬的分子机制尚未完全了解。我们之前已经表明,在心肌缺血期间,心脏中的线粒体自噬主要通过 Atg5/Atg7 非依赖性机制介导,包括 Unc-51 样激酶 1(Ulk1)依赖性替代线粒体自噬。在这里,我们研究了替代线粒体自噬在 PO 诱导的肥大期间在心脏中的作用。
在对横主动脉缩窄(TAC)的反应中观察到心脏中的线粒体自噬,在 3-5 天达到峰值。虽然 TAC 通过心脏中的 Atg7 依赖性机制短暂地上调线粒体自噬,在 1 天达到峰值,但它也通过 Ulk1 依赖性机制更强烈地激活,并且具有延迟的时间过程。与野生型小鼠相比,ulk1 心脏特异性敲除(cKO)小鼠的 TAC 诱导的心脏功能障碍、肥大和纤维化更为严重。线粒体自噬的延迟激活表现为 Rab9 斑点和线粒体的共定位以及 Rab9 丝氨酸 179 的磷酸化,这是替代线粒体自噬的主要特征。此外,TAC 诱导的线粒体纵横比降低和线粒体嵴不规则性加剧被消除,这表明在 ulk1 cKO 小鼠中,线粒体质量控制机制在响应 TAC 时受损。TAT-Beclin 1 甚至在 Ulk1 缺陷条件下激活线粒体自噬。TAT-Beclin 1 治疗在 PO 期间挽救了 ulk1 cKO 小鼠的线粒体功能障碍和心脏功能障碍。
Ulk1 介导的替代线粒体自噬是响应 PO 介导线粒体自噬的主要机制,在介导线粒体质量控制机制和保护心脏免受心脏功能障碍方面发挥重要作用。