Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China.
Microbiol Spectr. 2022 Feb 23;10(1):e0231021. doi: 10.1128/spectrum.02310-21. Epub 2022 Jan 12.
Under oxidative stress, viruses prefer glycolysis as an ATP source, and glutamine is required as an anaplerotic substrate to replenish the TCA cycle. Infectious spleen and kidney necrosis virus (ISKNV) induces reductive glutamine metabolism in the host cells. Here we report that ISKNV infection the increased NAD+/NADH ratio and the gene expression of glutaminase 1 (GLS1), glutamate dehydrogenase (GDH), and isocitrate dehydrogenase (IDH2) resulted in the phosphorylation and activation of mammalian target of rapamycin (mTOR) in CPB cells. Inhibition of mTOR signaling attenuates ISKNV-induced the upregulation of GLS1, GDH, and IDH2 genes expression, and exhibits significant antiviral activity. Moreover, the expression of silent information regulation 2 homolog 3 (SIRT3) in mRNA level is increased to enhance the reductive glutamine metabolism in ISKNV-infected cells. And those were verified by the expression levels of metabolic genes and the activities of metabolic enzymes in SIRT3-overexpressed or SIRT3-knocked down cells. Remarkably, activation of mTOR signaling upregulates the expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, leading to increased expression of SIRT3 and metabolic genes. These results indicate that mTOR signaling manipulates reductive glutamine metabolism in ISKNV-infected cells through PGC-1α-dependent regulation of SIRT3. Our findings reveal new insights on ISKNV-host interactions and will contribute new cellular targets to antiviral therapy. Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of farmed fish disease that has caused huge economic losses in fresh and marine fish aquaculture. The redox state of cells is shaped by virus into a favorable microenvironment for virus replication and proliferation. Our previous study demonstrated that ISKNV replication induced glutamine metabolism reprogramming, and it is necessary for the ISKNV multiplication. In this study, the mechanistic link between the mTOR/PGC-1α/SIRT3 pathway and reductive glutamine metabolism in the ISKNV-infected cells was provided, which will contribute new insights into the pathogenesis of ISKNV and antiviral treatment strategies.
在氧化应激下,病毒优先选择糖酵解作为 ATP 来源,而谷氨酰胺则作为补充三羧酸 (TCA) 循环的补充物。传染性脾肾坏死病毒 (ISKNV) 诱导宿主细胞中还原性谷氨酰胺代谢。在这里,我们报告 ISKNV 感染导致 NAD+/NADH 比值增加,以及谷氨酰胺酶 1 (GLS1)、谷氨酸脱氢酶 (GDH) 和异柠檬酸脱氢酶 (IDH2) 的基因表达增加,导致 CPB 细胞中雷帕霉素靶蛋白 (mTOR) 的磷酸化和激活。抑制 mTOR 信号通路可减弱 ISKNV 诱导的 GLS1、GDH 和 IDH2 基因表达上调,并表现出显著的抗病毒活性。此外,沉默信息调节因子 2 同源物 3 (SIRT3) 的 mRNA 水平表达增加,以增强 ISKNV 感染细胞中的还原性谷氨酰胺代谢。这些都通过 SIRT3 过表达或敲低细胞中代谢基因的表达水平和代谢酶的活性得到验证。值得注意的是,mTOR 信号通路的激活上调过氧化物酶体增殖物激活受体 γ 共激活因子 1α (PGC-1α) 基因的表达,导致 SIRT3 和代谢基因的表达增加。这些结果表明,mTOR 信号通路通过 PGC-1α 依赖的 SIRT3 调节来操纵 ISKNV 感染细胞中的还原性谷氨酰胺代谢。我们的发现揭示了 ISKNV-宿主相互作用的新见解,并将为抗病毒治疗提供新的细胞靶标。传染性脾肾坏死病毒 (ISKNV) 是养殖鱼类疾病的病原体,已给淡水和海水鱼类养殖业造成巨大经济损失。细胞的氧化还原状态由病毒塑造,形成有利于病毒复制和增殖的微环境。我们之前的研究表明,ISKNV 复制诱导谷氨酰胺代谢重编程,这是 ISKNV 增殖所必需的。在这项研究中,提供了 mTOR/PGC-1α/SIRT3 通路与 ISKNV 感染细胞中还原性谷氨酰胺代谢之间的机制联系,这将为 ISKNV 的发病机制和抗病毒治疗策略提供新的见解。